Andreas Mayer Division of Infection and Immunity Institute for the Physics of Livings Systems

EPFL BEVAS

Imprints of antigen-driven selection in immune repertoires

@andimscience

www.qimmuno.com

CC-BY-NC XKCD

MY BODY HOSTS AN AUTONOMOUS MICROSCOPIC DEFENSIVE SWARM THAT WILL DO ANYTHING TO PROTECT ME. I HAVE NO ABILITY TO RESTRAIN IT AND I DON'T KNOW MY OWN POWER. SO LISTEN UP. SALES GREW BY 4% THIS QUARTER ...

BUSINESS PROTIP: YOU CAN STRENGTHEN ANY PRESENTATION BY OPENING WITH A REMINDER ABOUT HOW COOL IMMUNE SYSTEMS ARE.

Ritter lab, Altos San Francisco

UCL

How do killer T cells know what to attack?

Ritter lab, Altos San Francisco

Defending against the unknown

1. Generate cells with diverse receptors through genetic recombination

2. Amplify clones with useful receptor specificity dynamically

Diverse pathogens finding their match

pMHC diversity
 # peptides = 20 # amino acids

k=9 $\rightarrow 10^{12}$ up to k=25 $\rightarrow 10^{32}$

 $>10^4$ HLA alleles

TCR diversity

insertion profiles = 4 # insertions

- Beta : 25 VDins + 25 DJins ~ 10^{30}
- Alpha : 25 VJins ~ 10^{15}

> 10³⁰

> 1045

DallE's impression of T cells matching pathogens

Tracking immune responses by TCRseq

Large diversity of receptors \rightarrow built-in "barcodes" for clones

Dashed lines – null variation in statistical model of sampling process

Bottleneck: Decoding receptor specificity?

Match dynamic clones to TCRs of known specificity:

- sort specific T cells for different epitopes
- sequence their TCRs

But:

Individuals respond with distinct TCRs to same epitope

Degeneracy of the TCR sequence code

Different TCRs bind the same pMHC target

Degeneracy of the genetic sequence code

Different codons translate to the same amino acid

Learning the rules of the TCR binding code

Given sequence of two TCRs Prob(TCR₁ and TCR₂ bind same ligand)?

Measuring correlation functions of selection factors on sequence space Mayer, Callan PNAS 2023

Learning the right sequence space direction Pyo, Henderson, Wingreen, **Mayer**, in preparation

pMHC-specific TCRs are enriched for similar sequences

Distribution of off-diagonal entries: Probabilities of near-coincidences

$$p_C(\Delta) = \sum_{\{\sigma, \sigma'\}} P(\sigma) P(\sigma') I_{d(\sigma, \sigma') = \Delta}$$

Sequences at distance Δ

Detecting selection in sequence repertoires

How can we tell that the specific sequences are selected?

as opposed to just being a random subsample

Why this statistics?

Population genetics approach to detecting selection? **dN/dS** – compare rates of non-synonymous and synonymous changes

Here: selection on standing variation

- \rightarrow coincidence counting
- $p_{C} = Prob(AA(NT_{1}) = AA(NT_{2}))$

Why this statistics?

Population genetics approach to detecting selection? **dN/dS** – compare rates of non-synonymous and synonymous changes

Here: selection on standing variation

- \rightarrow coincidence counting
- $p_{C} = Prob(AA(NT_{1}) = AA(NT_{2}))$

NT Sequence
$$p_C = \frac{2|E|}{|V|(|V|-1)}$$

 $\overrightarrow{V} \overrightarrow{V} \overrightarrow{V}$
 $\overrightarrow{V} \overrightarrow{V} \overrightarrow{V}$
 $p_c = 0.02$
 $p_C = \frac{2|E|}{|V|(|V|-1)}$
Select random
 $clonotypes$
 $p_c = 0.04$

Theory of near coincidence counting

$$\frac{p_C[QP](\Delta)}{p_C[P](\Delta)} = \langle Q(\boldsymbol{\sigma})Q(\boldsymbol{\sigma}') \rangle_{\boldsymbol{\sigma} \stackrel{\Delta}{\sim} \boldsymbol{\sigma}'}$$
Pairs at d=A

Near-coincidence ratios = how selection co-varies with sequence

Selection for
specific binding:
$$\frac{p_C[QP](\Delta)}{p_C[P](\Delta)} = \frac{p_C[QP](0)}{p_C[P](0)} \langle f_{\sigma}(\Delta) \rangle_{\sigma \in S}$$

Measuring autocorrelation function of selection factor on sequence space

Common signature across modalities

 \rightarrow roughly exponential falloff by factors of 10 for each substitution

Mayer, Callan PNAS 2023

<u>ش</u>

Signature is explained by simple biophysical binding models

Modeling binding energies?

 \rightarrow Mix of independent site models

$$E_p(\sigma) = \sum_{i=1}^k \epsilon_p(i, \sigma_i),$$

$$\epsilon_p(i, \sigma_i) = \begin{cases} -1 & \text{for } \sigma_i \in \mathcal{S}_i^p \\ 0, & \text{otherwise.} \end{cases}$$

Functional diversity of the immune repertoire

Repertoire = mixture of epitope specific groups

 $P(\boldsymbol{\sigma}) = \sum_{\boldsymbol{\pi} \in \boldsymbol{\Pi}} P(\boldsymbol{\sigma} | \boldsymbol{\pi}) P(\boldsymbol{\pi}),$

Decomposition theorem:

 $p_C[P(\boldsymbol{\sigma})] = p_C[P(\boldsymbol{\pi})] \langle p_C[P(\boldsymbol{\sigma}|\boldsymbol{\pi})] \rangle$ $+ (1 - p_C[P(\boldsymbol{\pi})]) \langle p_C[P(\boldsymbol{\sigma}|\boldsymbol{\pi}_1), P(\boldsymbol{\sigma}|\boldsymbol{\pi}_2)] \rangle,$

Predicting shared specificity?

CASSWNGPTYEQYF - HLA-A2-BMLF1₂₈₀ CASSANGPTYEQYF - HLA-A2-BMLF1₂₈₀ ?

So far: d(TCR₁, TCR₂) \rightarrow <P(TCR₂ binds X | TCR₁ binds X)

In what ways are pMHC-specific TCRs similar?

 $< P(TCR_2 \text{ binds } X \mid TCR_1 \text{ binds } X) > \rightarrow d(TCR_1, TCR_2)$

Decomposing selection into parts

Both receptor chains and their (conditional!) pairing contribute

Substitutions less disruptive than indels

Generalized as metric learning problem

$$\mathsf{d}_{\theta}(\mathcal{V}, \mathcal{P}) < \mathsf{d}_{\theta}(\mathcal{V}, \mathcal{V})$$

Determine optimal θ by gradient descent from training data

→ From sequences to biophysical features that represent specificity

Learned biophysical rules predict binding specificity

Promise of AI for TCR – pMHC binding prediction for immunology

- Unbiased profiling of T cell responses at epitope level & reverse epitope discovery
- Multiplexed **biomarkers** in infectious disease, autoimmunity, cancer
- Rational TCR engineering
- Predict crossreactivity

Our focus: Metric learning as a feasible stepping stone

Made with Biorender

 Unbiased profiling of T cell responses at epitope level & reverse epitope discovery

- Multiplexed **biomarkers** in infectious disease, autoimmunity, cancer
- Rational TCR optimization
 engineering
- Predict crossreactivity

Collaborators

Team

James Henderson, MSci Touchchai Chotisorayuth, MSc

Co-supervised: **Andrew Pyo,** Princeton PhD Yuta Nagano, UCL PhD

UCL

Benny Chain Mahdad Noursadeghi Gabriele Pollara Gillian Tomlinson

Leo Swadling Hans Stauss Jennifer Cowan

Princeton

Bill Bialek Curtis Callan Ned Wingreen

Sloan-Kettering

Ben Greenbaum Vinod Balachandran Chrysothemis Brown

UPenn Vijay Balasubramanian

UC Irvine / WUSTL

Lisa Wagar **leap**" Naresha Saligrama

Monash University

Nicole La Gruta

Oxford Omer Dushek

Interested in joining the group? Reach out!

www.qimmuno.com