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Objective:
Machine learning approach that is able to extract

biologically interpretable features on
antigen immunogenicity & T-cell epitope specificity

Presentation on HLA   
Killer T cells                       Antigen

    T-cell receptor
    (TCR)

Only a fraction of HLA-presented antigens are immunogenic (promote a T cell response).
Immunogenicity prediction: key in neoantigen discovery, low success rate (Wells et al. 2020)

pMHC epitope elicits the response only of specific small subsets of TCRs, recent advances
in prediction but insight into molecular properties is still challenging
(Gielis et al. 2019, Montemurro et al. 2021, Weber et al. 2021 and others)
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Enrichment in distinctive patterns

Enrichment in aromatic, hydrophobic 

 

residues in immunogenic peptides 

see also:  Calis et al. 2013, Chowell et al. 2015 

  From Schmidt et al. 2021 

Antigen immunogenicity and epitope-specificity of T cell receptors
result from physico-chemical constraints on sequence composition
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Enrichment in distinctive patterns

Enrichment in aromatic, hydrophobic 
residues in immunogenic peptides 

Convergence in sequence motifs 
in epitope-specific receptors 

From Dash et al. 2017

see also: Glanville et al. 2017, Meysman et al. 2019
Pogorelyy et al. 2019 , Mayer-Blackwell et al. 2021 etcsee also: Calis et al. 2013, Chowell et al. 2015

From Schmidt et al. 2021

Antigen immunogenicity and epitope-specificity of T cell receptors
result from physico-chemical constraints on sequence composition

(ensuring e.g. in antigens high binding affinity to HLA) 
How to disentangle pattern enrichment from baseline constraints?
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Our approach:
Machine learning approach known as ‘transfer learning’

within the model known as Restricted Boltzmann Machines1

Based on the pre-print: B. Bravi, A. Di Gioacchino, J. Fernandez-de-Cossio-Diaz, A.M.
Walczak, T. Mora, S. Cocco, R. Monasson, Learning the differences: a transfer-learning
approach to predict antigen immunogenicity and T-cell receptor specificity, Biorxiv
2022.12.06.519259v1 (2022)

1(Smolensky 1986, Hinton 2002; Biophysical modelling: Tubiana, Cocco and Monasson 2019, Shimagaki and Weigt 2019)
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Model of presentation

Data from IEDB  

V L A G L L G N V

background RBM

captures background constraints (binding affinity to HLA)

Presented antigens 

HLA 

VLAGLLGNV
GILGFVFTL
FLCLFLLPSL
SLQQELAHM
ALYGVWPLLL
ALAESIRPL

HLA-A*02:01 presented antigens

(RBM-MHC, Bravi et al. 2021) 
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High frequency amino acids
at anchor positions (2,9)

TCR

HLA-A*02:01 CMV peptide NLVPMVATV

PDB 3GSN

Peptide residues in contact with TCR
Peptide residues in contact with HLA
Peptide residues in contact with TCR & HLA
TCR    residues in contact with the peptide
TCR    residues in contact with the peptide

Contact positions in resolved
                               structures:

Positions 4-8 in contact
(Schmidt et al 2021, Milighetti et al. 2021) 

Differences in statistics of immunogenic
peptides should reflect contacts
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                               structures:

Model prediction:

captures correlations
  between positions

related to amino acid frequency difference 
between immunogenic and presented 

We hypothesize that sites
at high Ti(σi) are potential contacts
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Structural interpretation

diffRBM identifies positions 4-8 as the most relevant to immunogenicity
without restricting a priori the input sequences to a subset of positions

Comparison: independent-site models
based purely amino acid (AA) frequency (see e.g. IEDB tool)
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Contact prediction (peptide-TCR)
Top ranking positions by Ti(σi) → putative contacts

We test the prediction by the Positive Predictive Value (PPV):
fraction of ranked positions corresponding to true contacts

PPV averaged over structures for 3 HLA-I (HLA-A*02:01, HLA-B*35:01, HLA-B*07:02 - in
total 46 structures)
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Classifying immunogenic vs non-immunogenic

Performance at discriminating immunogenic vs non-immunogenic

diffRBM units' score of immunogenicity
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Comparison to TCR avidity assays
Data on TCR cross-reactivity to NLVPMVATV mutants

From Luksza et al. Nature 2022

WT: NLVPMVATV MT: NTVPMVATV
measure measure
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Lethal mutation
For 3 TCRs

Positive mutation costs → loss in TCR response & decrease in antigen immunogenicity

We distinguish 2 groups of mutations: lethal and non-lethal (for TCR response)
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Model of T-cell epitope specificity

Model of bulk repertoire

C A S S P N T G - F V27 J2-2

background RBM

C A S S I R S S - F V19 J2-7

diffRBM units

T-cell receptors 
of bulk repertoire 

T cells 

Epitope-specific TCR 

CASSIRSSYEQYF V19 J2-7
CASSQMTGLNTEAFF V28 J1-1
CASSSRSAGELFF V19 J2-2
CASSGGRNQPQHF V5-4 J1-5
CASSVRSSYEQYF V19 J2-7 
CASSSRSAYEQYF V19 J2-7

CASSPNTGELFF V27 J2-2
CASSIRSSYEQYF V19 J2-7
CASSRDRATDTQYF V28 J2-3
CASSPRRHGDTEAFF V14 J1-1
CASKQGSSYEQYF V6-6 J2-7
CASSPWDGNTEAFF V18 J1-1

CDR3    sequences from bulk repertoire

Specific to GILGFVFTL

Model of epitope specificity

CDR3    of TCRs specific to epitope GILGFVFTL 

Data from VDJdbData from Emerson et al. 2017

diffRBM units: capture antigen-driven convergent features
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Contact prediction (CDR3β-peptide)
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diffRBM performs better than independent models, both higher than
random baseline
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Classifying epitope-specific receptors
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       Classifying epitope-specific receptors vs generic non-binders (bulk):                         
diffRBM reaches the performance of state-of-the-art TCR specificity tools

25 / 41



Classifying epitope-specific receptors

Unsupervised
Supervised

diffR
BM unit

s
full R

BM

back
grou

nd R
BM

SONIA

k-NN clas
sifer TCRex

NetTCR-2.0
0.3
0.4
0.5
0.6
0.7
0.8
0.9

AU
C

Influenza peptide GILGFVFTL

diffRBM units' score of TCR specificity0.0

0.1

0.2

De
ns

ity

0.0 0.5 1.0
Frac. bulk

0.0

0.5

1.0

Fr
ac

. s
pe

cif
ic

AUC = 0.82

GILGFVFTL-specific
bulk repertoire CDR3

Performance at discriminating specific vs naive CDR3

Consistent trend across epitopes

diffR
BM unit

s
full R

BM

back
grou

nd R
BM

SONIA

k-NN clas
sifer TCRex

NetTCR-2.0
0.3
0.4
0.5
0.6
0.7
0.8
0.9

AU
C

EBV peptide GLCTLVAML

diffR
BM unit

s
full R

BM

back
grou

nd R
BM

SONIA

k-NN clas
sifer TCRex

NetTCR-2.0
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Sars-Cov-2 peptide YLQPRTFLL

diffR
BM unit

s
full R

BM

back
grou

nd R
BM

SONIA

k-NN clas
sifer TCRex

NetTCR-2.0
0.3
0.4
0.5
0.6
0.7
0.8
0.9 CMV peptide NLVPMVATV

26 / 41



Summary

Transfer learning: diffRBM parameters
capture characteristic differences of immunogenic
peptides and epitope-specific receptors

They allow us to estimate peptide-CDR3β contacts
Probabilistic scores distinguish immunogenic vs
non-immunogenic peptides, epitope-specific vs generic
receptors, with performance comparable to classifiers
Applications in vaccine design, TCR engineering,
cancer neoantigen discovery, study of viral evolution and
immunoediting in cancer
Broader domain of application: distinctive sequence
features that are selected upon (directed evolution, etc.)
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Comparison of differential models
(Immunogenicity)
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Comparison to PRIME and IEDB tool

top RBM: AUC = 0.66 (HLA-A*02:01), AUC = 0.65
(HLA-B*07:02), AUC = 0.67 (HLA-B*35:01)

PRIME (Schmidt et al. 2021): AUC = 0.56 (HLA-A*02:01),
AUC = 0.52 (HLA-B*07:02), AUC = 0.58 (HLA-B*35:01)

IEDB tool (Calis et al. 2013): AUC = 0.53 (HLA-A*02:01),
AUC = 0.60 (HLA-B*07:02), AUC = 0.57 (HLA-B*35:01)

(Note: different training set)
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Residues’ contribution to immunogenicity
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TCR specificity
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Performance at discriminating specific vs bulk CDR3  (amino acid only)
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Robustness to choice of naive TCR repertoire
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Performance at discriminating specific vs bulk CDR3  (different background datasets)
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Hyper-parametric search
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Hyper-parametric search
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Hyper-parametric search
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Hyper-parametric search
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Hyper-parametric search
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