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Google / DeepMind / AlphaFold

Andrew W. Senior et al ”Improved protein structure prediction

using potentials from deep learning”, Nature 577:706-710 (2020)
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“Considerable progress has recently been made by leveraging 
genetic information. It is possible to infer which amino acid 
residues are in contact by analysing covariation in homologous 
sequences, which aids in the prediction of protein structures”

Andrew W. Senior et al Nature 577:706-710 (2020) [abstract]

The talk is about this earlier

class of methods.

Collectively known as 

Direct Coupling Analysis

(DCA).

In statistics one would say

parameter inference in an 

exponential model family.



. 

direct coupling 

analysis (DCA)

ranking by 

correlations

Weigt et al, PNAS 2009

⁞

Morcos et al, PNAS 2011

⁞

many others

⁞

bit.ly/3Mr8351

⁞ 
(courtesy

S. Ovchinnikov lab)

DCA in a nutshell














+= 

ij

jiij

i

ii xxJxh
JhZ

P ),()(exp
),(

1
)(x

April 17, 2023 EPFL / Lausanne 4



April 17, 2023 EPFL / Lausanne 5

1st main method: elements of 

inverse correlation matrix 
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mean-field DCA: Morcos et al PNAS (2011) [M Weigt] + many later contributions

theory in Kappen & Spanjers Phys. Rev. E (2001) and in Nguyen, Berg & Zecchina (2017)
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Julian Besag, The Statistician (1975); plmDCA, Ekeberg et al  Phys. Rev. E (2013); 

GREMLIN, Kamisetty et al PNAS (2014); CCMpred, Seemayer et al Bioinformatics (2014)

Maximum likelihood

Pseudo-maximum likelihood (avoids computing Z):
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2nd main method: pseudo-

likelihood maximization
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Why DCA today?

You may not (yet) have a large number of labelled examples on 

which to train a more complex AI method. Examples: RNA, 

protein-protein interactions, fitness landscapes….

Your model might be too big for deep learning. Example: 

genome scale models

You may have a priori reasons to believe that the distribution 

actually is of the exponential type assumed in DCA.
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additive effects epistatic effects
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A global-scale example

DCA parameters

The “Maela” data set: ~3,000 

genomes of Streptococcus 

pneumoniae, a bacterium with 

high rate of recombination.

The data had about 100,000 loci 

of variability, out of a genome 

2.1Mbp (w/ some threshold).

Skwark et al

PLoS Genetics (2017)
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Epistatically coupled loci in 

proteins in the PBP family 

[purple] β-lactam; [cyan] active site; [green and yellow] groups of predictions 
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M. Skwark et al, ”Interacting networks of resistance, virulence and core machinery 

genes identified by genome-wide epistasis analysis” PLoS Genetics 2017

(Streptococcus pneumoniae, ”Maela” data set)

Cui et al. [Daniel Falush] eLife 2020 (Vibrio parahaemolyticus)

B. Schubert, R. Maddamsetti, J. Nyman, M. R. Farhat & D.  S.  Marks, Nature 

Microbiology 2019 (Neisseria gonorrhoeae)

(Streptococcus pyogenes M1)

Some DCA on genome scale

in bacteria and viruses 

C. Chewapreecha et al [Jukka Corander], Molecular Biology and Evolution 2022

(Burkholderia pseudomallei, not quite DCA but by a similar method)

L Boeck et al [Julian Parkhill & R. Andres Floto], Nature Microbiology (2022) 

(Mycobacterium abscessus)

H-L Zeng et al [Erik Aurell] PNAS 2020 (SARS-CoV-2)

E Cresswell-Clay & V Periwal, Mathematical biosciences 2021 (SARS-CoV-2) 

J Rodriguez-Rivas et al [Martin Weigt] PNAS 2022 (SARS-CoV-2) 
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Those are the questions of today’s talk.

One can ask them for AI / learning as well. But then 

they are more difficult. And you have world-class

experts here at EPFL, whom you can ask instead.

Note that I am not asking if DCA (or AI / learning) 

works, in many cases. It is well known by now that it 

does. But that is another question.  

Why does DCA work 

and when does it not?



April 17, 2023 EPFL / Lausanne 12

Statistical genetics
A general understanding of population genetics in analogy with

statistical physics. This has a long history starting with Hardy and 

Weinberg (1908) and Fisher and Wright in the 1920ies and 1930ies.

In statistical physics a goal is to deduce macroscopic properties of a 

body (thermodynamics) from underlying physical laws.

In statistical genetics the goal is analogously to deduce macroscopic

properties of a population from the laws of evolution. 

Understanding why and when DCA works from evolutionary models

falls into this category of questions.



In other words: justify DCA

from known laws of evolution

The distribution of genotypes in a 

population is shaped by the forces of 

evolution which are:  (1) Darwinian 

selection (tendency to maximize fitness), 

(2) recombination, (3) mutations, and (4) 

genetic drift (finite-N effects)…
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Unicorns are imagined instances of

organisms which do not evolve due to 

effects (1), (2) or (3). The extinct two-

horn Italian unicorn (the Pirassoipi) had 

a dense pelt. In unicorns these properties 

therefore disappeared together.  



In recombination alleles are 

mixed between chromosomes
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J Weaver, Biotechniques (2016)

Cross-over happens 50-80 

times in human during meiosis. 

Recombination is sometimes 

used in the restricted sense of 

mixing of genetic material 

between two chromosomes in the 

same parent (cross-over).

Can also be used in the more 

general sense of any mixing of 

genetic material.

In bacteria recombination and 

sex are often used to mean the 

same thing.



In sex chromosomes are 

mixed between individuals
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Allows completely healthy offspring 

from not completely healthy parents
Transformation, transduction and 

conjugation are the main forms of 

bacterial sex (or recombination)   

Illustration of conjugation

Raz and Tannenbaum, Genetics (2010)
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Definitions 

Formal: A population is said to be in a quasi-linkage equilibrium 

(QLE) phase if (1) multi-genome distributions factorize and (2) 

single-genome distributions lie in an exponential family with no 

higher terms than in the fitness function. Which for quadratic fitness 

means

Kimura Genetics 52:875–890 (1965)

Neher & Shraiman PNAS 106:6866 (2009); Rev Mod Phys 83:1283 (2011)

formal definition in Dichio, Zeng, EA (2023)
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Linkage equilibrium: the distributions of alleles over loci are 

independent. Happens when recombination mix up genomes.  

Linkage disequilibrium (LD): distributions at alleles are not 

independent. Can be due to fitness or inheritance (or both).



The Kimura-Neher-Shraiman

theory (Neher-Shraiman version)
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The distribution of genotypes in a population changes according to 

selection, mutation, genetic drift (finite-N) and recombination.

“Ising genome”

Fitness

Mutations

Two haploid parents copy themselves, produce a child, and the rest 

of both genomes is discarded. Directly appropriate for some yeasts. 

One can modify the above to also cover bacterial recombination. 



Neher-Shraiman theory of QLE
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Recombination acts on pairwise dependencies through

Neher & Shraiman, Rev Mod Phys 83:1283 (2011)

[for Potts not Ising] Gao, Cecconi, Vulpiani, Zhou, EA, Phys. Biol. 16 026002 (2019)



Example of a scatter plot for the reconstructed

epistatic fitness components fij
* (y-axis) versus

true underlying parameters fij (x-axis). 

MF (mean-field) and PLM (pseudo-likelihood

maximization) versions of DCA give similar

reconstruction performance.

Value Description

N 200 n. individuals

L 25 n. of loci

T 2.5 x 

103

n. of

generations

ω 0.5 crossover rate

r [0.0:1.

0]

rate of

recombination

µ [0.005

:0.1]

rate of

mutation

σe [0.001

:0.02]

𝑓𝑖𝑗~𝒩 0, 𝜎𝑒

Simulation parameters of

FFPopsim [Zanini and 

Neher Bioinformatics 28

3332–3 (2012)]

𝑓𝑖𝑗
∗ = 𝑟 ∙ 𝑐𝑖𝑗 ∙ 𝐽𝑖𝑗

∗ 𝑐𝑖𝑗 ≈
1
2
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Mauri-Zeng-Dichio-Aurell-Cocco-

Monasson revised theor(ies)
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Derived by a Gaussian closure on moments, but can also be 

done similarly to the Neher-Shraiman analysis. Several levels 

of inference formulae were found, out of which I will here 

only use the simplest (which NB bi-passes the need for DCA)

𝑓𝑖𝑗
∗ = 𝜒𝑖𝑗 ∙

4𝜇+𝑟𝑐𝑖𝑗

1−𝜒𝑖
2 1−𝜒𝑗

2
𝜒𝑖 = 𝑠𝑖 𝜒𝑖𝑗= 𝑠𝑖𝑠𝑗 − 𝜒𝑖𝜒𝑗

Note the presence of mutation rate 𝜇. The formula reduces to 

Kimura-Neher-Shraiman in the small-coupling regime and in 

the limit when 𝜇 tends to zero.

Mauri, Cocco, Monasson, Europhys Lett 132 56001 (2021)

Zeng, Mauri, Dichio, Cocco, Monasson, EA JSTAT 2021 083501 (2021)



KNS vs MZDACM
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Zeng et al JSTAT

083501 (2021)

Regression of inferred 

epistasis (𝑓𝑖𝑗
∗) on 

underlying “true” 

epistasis (𝑓𝑖𝑗). 

Comparison of the 

KNS formula: 

𝑓𝑖𝑗
∗= 𝑟 ∙ 𝑐𝑖𝑗 ∙ 𝐽𝑖𝑗

∗ ,

and the MZDACM 

formula;

𝑓𝑖𝑗
∗ =

𝜒𝑖𝑗 ∙ 4𝜇+𝑟𝑐𝑖𝑗

1−𝜒𝑖
2 1−𝜒𝑗

2 .



𝜇 vs 𝑟 at random 

additive fitness 

𝜎𝑎 = 0.05 and 

random epistatic 

fitness 𝜎𝑒 = 0.004. 
One realization for 
each parameter.
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Zeng et al JSTAT 083501 (2021)

Performance phase diagrams

KNS MZDACM

KNS MZDACM

𝜎𝑒 vs 𝑟 at 

mutation rate 

𝜇 = 0.2. 

For other 

parameters, see 

paper. 



Loss of QLE
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Rep. Prog. Phys. 86 052601 (2023) [arXiv:2105.01428]

and a brief review of earlier work



April 17, 2023 EPFL / Lausanne 24

Exponential models

Multi-genome distributions factorize

Mixture models

Multi-genome 

distributions are 

complex

QLECC

Clonal competition Quasi-linkage equilibrium
r

recombination 

strength in units 

of fitness 

variation

QLE vs clonal competition
Neher & Shraiman PNAS 106:6866 (2009); Rev Mod Phys 83:1283 (2011); 

Neher, Vucelja, Mézard, Shraiman JSTAT 01008 (2013)

At 𝑁 = ∞ there is no QLE! However, log𝒩𝑎𝑣𝑜 ≈ 7,4…

𝑟∗~𝜎 log𝑁

𝜇 ≈ 0



At finite mutation rate the loss of QLE

manifests itself differently. For finite 

populations appears an intermittent 

regime fluctuating between QLE and 

Non-Random Coexistence (NRC).

Total mean fitness in the population 

fluctuates, and is higher in NRC.

Snapshot of the fitness distribution at 

𝑡 = 4000 in the above (NRC interval).

Differently to QLE, the distribution is 

bimodal with a group of individuals at 

high fitness. 

Similar to predictions in CC, though 

here no exact clones, due to mutations.
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Non-random coexistence 
𝜇 ≠ 0



Empirical distribution of escape times from respectively QLE and NRC. 

Simulations are run in a region of the parameter space (including 𝑁, here 575 

and 675) where the systems dynamics visually jumps back and forth between 

QLE and NRC. Both distributions are well fitted as exponentials. The inverse 

rate is the mean escape time, in either direction. Other parameters: 𝐿 = 25, 

𝑇 = 1.5 ∙ 106, 𝜇 = 𝑟 = 𝜔 = 0.5, 𝜎𝑒 = 0.029.
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Escape time distributions 



R² = 0,9402

0

1 000

2 000

3 000

4 000

5 000

6 000

7 000

8 000

450 475 500 525 550 575 600 625 650 675 700 725

t*

N

1/a_QLE 1/a_NRC exp(1/a_NRC)

tQLE tNRC tNRCtQLE ...

The QLE → NRC transition happens when an individual in a finite population 

finds a high-fitness state. Analogous to the biophysical problem of transcription 

factors finding a binding site. Expected waiting time 𝑁−1.
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Finite-𝑵 dependence 

Estimated mean escape 

times from QLE and NRC. 

Inset: The dynamics 

undergoes multiple 

transitions QLE ↔ NRC  

(𝑇 = 1.0 ∙ 104). 

The NRC → QLE transition happens when a group of high-fitness individuals is 

lost from the population. Analogous to Muller ratchet. Expected waiting time 

exponential in 𝑁.



A number of simulations are run for the same time (2.0 ∙ 104). If the population 

remains in the QLE (NRC) the point is marked as blue (green). If at any point a 

transition QLE↔NRC is observed, the corresponding point is marked as red.

The previous heuristic theory predicts that for high 𝑁 we the population should 

always be in NRC (same as in the Clonal Competition loss channel). This seems 

to be in agreement with the simulations (provided there is at least one transition).
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“Phase diagram” in (𝑵, 𝝈𝒆) 



Allele frequency trajectories of all de novo mutations detected in 2 of the 12 

LTEE populations, labelled respectively Ara-6 and Ara+2. Population Ara-

6 (top row) shows quasi-stable coexistence of clades while Ara+2 (bottom 

row) shows mutations that fix rapidly. Quasi-stable coexistence was 

reported in 9 out of 12 LTEE populations [Good, McDonald, Barrick, 

Lenski, Desai 2017 Nature 551 45–50 (2017)].
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Figure previously unpublished, private communication from Profs B H 

Good and M M Desai, reproduced with permission. 

Long-term evolution exps.



Outlook & loose ends
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H-L Zeng et al [Erik Aurell] PNAS 2020 (SARS-CoV-2)

E Cresswell-Clay & V Periwal, Mathematical biosciences 2021 (SARS-CoV-2) 

J Rodriguez-Rivas et al [Martin Weigt] PNAS 2022 (SARS-CoV-2) 

SARS-CoV-2

Human (not yet attempted)
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Global-scale data difficulties
Zeng et al (2020) and

Cresswell-Clay & 

Periwal (2021) 

predicted many of the 

same interactions, from 

SARS-CoV-2 sequences 

on GISAID in 2020. 

Rodriguez-Rivas

et al (2022) 

predicted inter-

actions from other 

coronaviruses.
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Why Rodriguez-Rivas “better”?

Zeng et al and Cresswell-

Clay & Periwal hit the 

problem that many variable 

loci in GISAID in 2020 

later became fixed. Other 

interactions popped up.

These authors used DCA to

predict mutation scores,

which were then evaluated

on GISAID variability.

Rodriguez-Rivas 

et al PNAS 2022

Fig 4.B

Zeng et al PRE

2022 Fig 4(a)
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Human-scale DCA?

WHY? Why not?

Perhaps a way to address the 

shortcomings of GWAS 

studies, that many traits are 

not well explained by 

variability of single genes. 

Example: human obesity 

(BMI). In a cohort of 250k 

individuals and 2.8M genetic 

differences (SNPs) only 18 

new loci explaining <4% of 

variability of BMI were 

found. Speliotes et al. Nat 

Genet. 2010 
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Human-scale DCA
Problems and challenges

(Population biology:) Are large sets of human genomes described by exponential 

distributions? Are human populations in quasi-linkage equilibrium?  (of course, 

this cannot be exactly so, but in some approximate sense?)

(Algorithmic:) How to effectively compute the largest 𝐽𝑖𝑗 when the number of 

loci is in the millions or billions? NB, this is not a totally trivial problem even for 

correlations. In computer science it’s the “light bulb problem”.

L. Valiant. “Functionality in neural nets”, In First Workshop on Computational 

Learning Theory, pages 28–39, 1988; G. Valiant. “Finding correlations in sub-

quadratic time, with applications to learning parities and juntas”, FOCS 2012 

(Usability and validation:) the success of DCA and more recently AI methods 

such as Alpha-fold are to a large measure built on that many protein structures are 

known. There is a (partial) ground truth. This is (usually) not so on the genome 

scale. Better approaches to use and validate predictions would be advantageous.  
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Thanks 
Hong-Li Zeng

Vito Dichio

Yue Liu

Eugenio Mauri

Simona Cocco

Rémi Monasson

Fabbio Cecconi

Chen-Yi Gao 

Angelo Vulpiani

Hai-Jun Zhou

Boris Shraiman

Richard Neher

Benjamin Good 

Michael Desai 

National Natural Science Foundation of China (11705097), Natural Science 

Foundation of Nanjing University of Posts and Telecommunications (Grant 

Nos. 221101 and 222134), Swedish Research Council (Grant 2020-04980).



Deleterious mutation–selection balance. 

The population is distributed among 

classes of individuals carrying 𝑘
deleterious mutations. Classes with few 

mutations grow due to selection (green 

arrows), but lose individuals through 

mutations (violet arrows).
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The role of genetic drift

This can be done in Kimura-Neher-Shraiman theory (and was done by Neher & 

Shraiman). The master equations become stochastic differential equations.

This is (was) a serious issue in numerical simulations of QLE. Without 

mutations, eventually allele diversity at any locus is lost in a finite population. 

Correlations and Potts terms vanish, without any change in underlying fitness.



Quasi-linkage (QLE) equilibrium vs clonal competition (right). In a QLE state 

(left), individuals with the same genotype are rare and the fitness distribution is 

broad. In a clonal competition regime (right), few different genotypes are present 

in the population, each of them characterizing a number of individuals (a clone).
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β-lactam (penicillin) resistance 

@Mcstrother

Wikimedia Commons

PBPs (Penicillin-

binding proteins)
B. Spratt, Eur. J. Biochem. (1977)

PASTA (PF03793)

C. Yeats, RD Finn, A. Bateman, Trends Biochem Sci. (2002) 

"The PASTA domain: a beta-lactam-binding domain“.

Penicillin-binding protein and serine/threonine 

kinase associated domain [..] binds beta-lactam 

antibiotics and their peptidoglycan analogues 

[…] describe this previously uncharacterized 

domain and infer that it binds beta-lactam 

antibiotics and their peptidoglycan analogues. 



Spike-spike
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Zeng et al PRE 2022 Table I



Spike-non-spike
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Zeng et al PRE 2022 Table II
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Phylogeny (inheritance) a confounder?

Edwin Rodriguez Horta, Martin Weigt

bioRxiv 2020.08.12.247577

Is the effect due to inherited variation? We
tested by scrambling MSA while preserving
inter-sequence distances.
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Is it just correlation analysis?

There is very little overlap between the leading 
predictions from DCA and most correlated pairs.



SARS-CoV-2 perhaps also NRC?
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Coronaviruses recombine. This has been observed in SARS-CoV-2, in vivo.

Plots of allele frequencies at all loci show the well-known VoCs Alpha, Beta, 

Delta, Omicron…but also a bit more.  

frozen loci 

An NRC phase? Most 

of these intermittently 

fluctuating loci lie  in 

the 5’ or 3’ end of the 

SARS-CoV-2 genome. 

Alpha
Delta Omicron

Frequencies of all alleles on 

all positions per week from 

GISAID up to August 2022 

[Zeng & Liu, unpublished]
[ see also arXiv:2109.02962] 



Zeng, EA, Phys Rev E 101(5) 052409 (2020)
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Dynamics and fitness 

inference.

N = 200 (population size) 

L = 25 (# of loci) 

𝑟, 𝜌, 𝜎𝑒 = 0.05,0.5,0.002
T = 5 × 500 (simulation time)

In (a) [low mutation] there is

not enough variability in the

data over this duration. 



Phase diagrams. Parameters as in previous slide. Low 𝑟 does not work because 

Kimura-Neher-Shraiman does not apply. 

Zeng, EA, Phys Rev E 101(5) 052409 (2020)
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𝜎𝑒 = 0.002 𝜇 = 0.05



Reconstruction of the epistatic fitness components in the phase spaces 𝑟 ↔ 𝜇 and 𝑟 ↔ 𝜇.

Bigger dots means higher accuracy (lower reconstruction errors) according to MZDACM 

theory (simplest version, previous slide). Colors indicate the difference to Kimura-Neher-

Shraiman theory. MZDACM accurate Both formu recombination nor mutation high 

compared to epistatic fitness). Replotted after Zeng et al JSTAT 2021.
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Value Description

N 200 n. individuals

L 25 n. of loci

T 10,000 n. of generations

ω 0.5 crossover rate

r [0.0:1.

0]

rate of

recombination

µ [0.05:0

.5]

rate of mutation

σe [0.004:

0.04]
𝑓𝑖𝑗~𝒩 0, 𝜎𝑒

σa 0.05 𝑓𝑖~𝒩 0, 𝜎𝑎

𝜎𝑒 = 0.004

𝜇 = 0.2
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