Harnessing Sequence Generative Models for Inhibitory Peptide Design: a Case Study

Dr. Jérôme Tubiana

BeVAS 18/04/2023

Joint work with: Haim J. Wolfson lab Maayan Gal lab Lucia Adriana-Lifshits

Protein-protein Interaction (PPIs) Inhibitors

- Aberrant PPIs are associated with various diseases.
- PPIs are attractive targets for basic research, therapeutic & pesticide purpose.
- Interfering with PPIs with small molecules is challenging, due to their physio-chemical properties.
 - PPI interfaces are larger, flatter, hydrophobic
 - 40% of PPIs involve a disordered partner
- mAb widely successful, but only for extracellular targets

<u>Credit:</u> Lu et al. Nature Signal Transduction and Targeted Therapy 2020

Inhibiting PPIs with peptides: principle, benefits and challenges

Display experiments: Mutagenesis & selection

Donsky and Wolfson **Bioinformatics 2011**

In-silico docking & binding energy optimization

- EphB4-EphB2 complex
 - Peptides are suitable for binding protein-protein interfaces
 - Vative protein-peptides interactions are highly specific
 - \checkmark Initial peptide can be derived from native substrate in >50% cases (London et al. *Proteins 2011*)
 - × Flexibility makes computational modeling of protein-peptide interactions challenging (sampling & scoring)
 - X Display experiments can be difficult to setup

אוניברסיטת TEL AVIV **תלאביב** UNIVERSITY

- \times Unclear how to efficiently explore the vast search space (20^L peptides of length L)
- X Unclear how to select for specificity and other desirable properties (bioavailability, immunogenicity)

Evolutionary-based sequence generative models for protein design

High-order coevolution

אוניברסיטת TEL AVIV **תלאביב** UNIVERSITY

Non-exhaustive list of successful SGM-based design experiments:

- Chorismate Mutase (Russ et al. Science 2020)
- Luciferases (Hawkins-Hooker et al. PLOS CB 2021)
- 3. Malate Dehydrogenase (Repecka et al. Nat. Mach. Int. 2021)
- Nanobody libraries (Shin et al. Com. 2021) 4.
- 5. GFP (Biswas et al. Nat. Methods 2021)
- 6. SH3 domains (Lian et al. BiorXiv 2022)
- 7. Copper Superoxide Dismutase (Johnson et al. BiorXiv 2023)
- Cas9 PAM-interacting domain (Malbranke et al. BiorXiv 2023) 8.

Evolutionary-based generative models for peptide design

 Table 1
 Peptide generation studies using deep generative models. Abbreviations: NML, neural language model; VAE, variational autoencoder;

 GAN, generative adversarial network; AMP, antimicrobial peptide; ACP, anticancer peptide; CPP, cell-penetrating peptide; PMO, phosphorodiamidate morpholino oligomer

Method	Feature Representation	Application	Citation	Year
NML	One-hot	AMP generation	Müller <i>et al.</i> ⁵⁶	2018
NLM	Character sequence	AMP generation	Nagarajan <i>et al.</i> ⁵²	2018
NLM	Character sequence	ACP generation	Grisoni et al.46	2018
NLM	Learned representation using one-hot	Signal peptide generation	Wu et al. ⁵⁵	2020
NLM	Learned representation using structural and evolutionary data	AMP generation	Caceres-Delpiano <i>et al.</i> ⁵⁴	2020
NLM	One-hot	AMP generation	Wang <i>et al.</i> ⁴¹	2021
NLM	Character sequence	CPP generation	Tran <i>et al.</i> ⁵³	2021
NLM	One-hot	AMP generation	Capecchi <i>et al.</i> ⁴²	2021
NLM	Fingerprint, one-hot	PMO delivery peptide generation	Schissel et al.57	2021
VAE	Learned representation using character sequence	AMP generation	Das <i>et al.</i> ³⁸	2018
VAE	Learned representation using one-hot	AMP generation	Dean <i>et al.</i> ⁴⁴	2020
VAE	Learned representation using character sequence	AMP generation	Das <i>et al.</i> ⁴⁵	2021
GAN	Character sequence	AMP generation	Tucs <i>et al.</i> ⁵⁰	2020
GAN	Character sequence/PDB structure	ACP generation	Rossetto et al.48	2020
GAN	Learned representation using character sequence	AMP generation	Ferrell et al.39	2020
GAN	Character sequence	AMP generation	Oort <i>et al.</i> ⁴⁰	2021
GAN	Sequence of amino acid property vectors	Immunogenic peptide generation	Li <i>et al.</i> ⁵¹	2021
GAN	Character sequence	AMP generation	Surana <i>et al.</i> ⁴⁹	2021

Table reproduced from *Deep generative models for peptide design* F. Wan, D. Kontogiorgos-Heintz and C. de la Fuente-Nunez, Digital Discovery 2022

Adapting to PPI inhibitor design?

אוניברסיטת TEL AVIV

תלאביב UNIVERSITY

1/ How to gather sufficiently diverse MSA?

2/ How to go beyond binding affinity of natural peptides?

5

An integrative PPI inhibitor peptide design protocol

TEL AVIV אוניברסיטת UNIVERSITY תלאביב

The Calcineurin (Cn) signaling pathway

Phosphoserine (PDB: 1t29)

אוניברסיטת TEL AVIV על אביב UNIVERSITY

Calcineurin (Cn) is a **calcium-dependent phosphatase** involved in multiple health & disease pathways.

(Li et al. Trends Cell. Biology 2011)

Structural basis of Calcineurin function

Most Cn substrates are disordered. They bind via two conserved short linear motifs (SLiMS)

Alignment of PxIxIT-containing fragments from substrates

representative substrate fragments

Calcineurin inhibitors

Cyclosporine A (CsA)

The **PVIVIT** peptide Aramburu et al. 1998 Science (Combinatorial library + Display experiment)

Catalytic site inhibitors

Prescribed for transplantations since 80's

Protein Interaction inhibitor

Mice preclinical studies (Noguchi et al. Nature Medicine 2004)

Step 1: Construction of an alignment of putative binding fragments

Input: a list of 67 Calcineurin substrates. Sources: integrative high-throughput experiments

- Goldman A, Roy J, Bodenmiller B, Wanka S, Landry CR, Aebersold R, et al. The calcineurin signaling network evolves via conserved kinasephosphatase modules that transcend substrate identity. *Mol Cell. 2014*
- Wigington CP, Roy J, Damle NP, Yadav VK, Blikstad C, Resch E, et al.
 Systematic Discovery of Short Linear Motifs Decodes Calcineurin
 Phosphatase Signaling. *Mol Cell. 2020* (Cyert lab)

Gene	Organism	SLIM
NFATC1	Homo Sapiens	PRIEIT
NFATC2	Homo Sapiens	PRIEIT
NFATC3	Homo Sapiens	PSIQIT
NFATC4	Homo Sapiens	PSIRIT
TRESK	Homo Sapiens	PQIIIS
CRZ1	Saccharomyces Cerevisiae	PIISIQ
RCN1	Saccharomyces Cerevisiae	GAITID
SFB3	Saccharomyces Cerevisiae	PKFQFT
RGA2	Saccharomyces Cerevisiae	PQVLVS
ROD1	Saccharomyces Cerevisiae	PQIKIE
STE12	Saccharomyces Cerevisiae	PALSFS
RTS1	Saccharomyces Cerevisiae	PVLTVT
SLM1	Saccharomyces Cerevisiae	PNIYIQ
SLM2	Saccharomyces Cerevisiae	PEFYIE
RPL4A	Saccharomyces Cerevisiae	PQVTVH
RCN2	Saccharomyces Cerevisiae	PSITVN
DIG2	Saccharomyces Cerevisiae	PALNFS

The MSA pairing problem

Cn-substrate interactions are not systematically conserved across homologs

MirrorTree method (Pazos and Valencia 1994)

Find pairing that maximizes key fingerprints of interacting proteins:

- Interacting partners sequences tend to mutate at similar rates
- Binding sites tend to coevolve

אוניברסיטת TEL AVIV

תלאביב UNIVERSITY

Marmier et al PLOS CB 2019)

Calcineurin-binding fragments are highly diverse

Step 2: Sequence Generative Modeling (compositional Restricted Boltmann Machines)

Graphical model constituted by two coupled sets of random variables

$$P(\mathbf{v}, \mathbf{h}) = \frac{1}{Z} \exp\left[-E(\mathbf{v}, \mathbf{h})\right]$$
$$E(\mathbf{v}, \mathbf{h}) = -\sum_{i=1}^{N} \mathbf{g}_{i}(\mathbf{v}_{i}) + \sum_{\mu=1}^{M} \mathcal{U}_{\mu}(\mathbf{h}_{\mu}) - \sum_{i,\mu} \mathbf{w}_{i\mu}(\mathbf{v}_{i})\mathbf{h}_{\mu}$$

The marginal defines a probability distribution over the data space

$$P(v) = \int \prod_{\mu} dh_{\mu} P(\mathbf{v}, \mathbf{h}) = \frac{1}{\mathbf{Z}} \exp\left[\sum_{\mathbf{i}} \mathbf{g}_{\mathbf{i}}(\mathbf{v}_{\mathbf{i}}) + \sum_{\mu} \Gamma_{\mu} \left(\sum_{\mathbf{i}} \mathbf{w}_{\mathbf{i}\mu}(\mathbf{v}_{\mathbf{i}})\right)\right]$$

Trainable, non-quadratic function < (generalizes over pairwise models)

The conditional distribution defines a representation of data

Sparse weight matrix (Interpretability, compositionality)

 $\langle \mathbf{h}_{\mu} | \mathbf{v}
angle = \Gamma'_{\mu} \left| \sum w_{i\mu}(\mathbf{v}_i) \right|$

Tubiana, Monasson PRL 2017 Tubiana, Cocco, Monasson eLife 2019 Tubiana, Cocco, Monasson Neur. Comp. 2019

Visible (Data) layer

Ackley Sejnowski Hinton 1985 Smolensky 1986

Training algorithm for RBM

Data set:
$$\{\mathbf{v}^{1}, \mathbf{v}^{2}, ... \mathbf{v}^{B}\}$$

Want to maximize log-likelihood: $\mathcal{L} = \sum_{b} \log P(\mathbf{v}^{b} | \{w_{i\mu}\}, \{g_{i}\}, \{\mathcal{U}_{\mu}\})$
Stochastic gradient ascent: parameters Θ
 $\log P(\mathbf{v}) = -E_{\text{eff}}(\mathbf{v}) - \log Z$
 $\frac{\partial \mathcal{L}}{\partial \Theta_{a}} = \left\langle \frac{\partial E_{\text{eff}}(\mathbf{v} | \Theta)}{\partial \Theta_{a}} \right\rangle_{\mathbf{v} \sim \text{RBM}} - \left\langle \frac{\partial E_{\text{eff}}(\mathbf{v} | \Theta)}{\partial \Theta_{a}} \right\rangle_{\mathbf{v} \sim \text{Data}}$
Moment
Matching
Equations
Requires MCMC
sampling
Computed directly
from data

Learning algorithms : Boltzmann Machine Learning (Ackley Hinton Sejnowski 1985), PCD (Tieleman Hinton 2008)

Sampling from RBM

- Compute Hidden units Inputs
- Sample each hidden unit independently
- Compute the visible layer inputs
- Sample each visible unit independently

אוניברסיטת TEL AVIV

תלאביב UNIVERSITY

$$I_{\mu} = \sum_{i} w_{i\mu} v_{i}$$
$$P(h_{\mu}|I_{\mu}) \propto \exp\left[-\mathcal{U}_{\mu}(h_{\mu}) + h_{\mu}I_{\mu}\right]$$

$$I_{i} = \sum_{\mu} w_{i\mu} h_{\mu}$$
$$P(v_{i}|I_{i}) \propto \exp\left[\left(g_{i} + I_{i}\right)v_{i}\right]$$

Directed Latent variables model

- PCA, ICA
- Sparse dictionaries
- Variational Autoencoders

Compositional Restricted Boltzmann Machines

For latent variable generative models, hidden unit distribution guides weight interpretation & extrapolation regime. For RBMs, it is unspecified.

P(**h**) $\langle \mathbf{v} | \mathbf{h} \rangle = \text{Softmax}(w^T h)$ P(**v**) Prototype (Ferromagnetic) representation Weights are prototype configurations TEL AVIV אוניברסיטת UNIVERSITY תלאביב

interpretation

Compositional Representation Weights are parts of configurations

Sparse weights + unbounded, nonquadratic potentials ⇒ compositional representation

Tubiana, Monasson PRL 2017 Tubiana, Cocco, Monasson Neur. Comp. 2019

Learning cRBM: the interpretability-accuracy trade-off

TEL AVIV אוניברסיטת UNIVERSITY תל אביב

Practical considerations for learning cRBMs

https://github.com/jertubiana/PGM

- <u>Objective function</u>: Maximum likelihood + regularization penalties
- <u>Sampling algorithm</u>: MCMC, PCD.
- <u>Optimizer:</u> RMSprop (adaptive learning rates, improves convergence rates).
- <u>Hidden unit potential</u>: dReLU (adaptive non-linearity, for fitting non-gaussian distributions)
- <u>Parameterization</u>: Batch normalization (improves hessian conditioning, promotes homogeneity).
- <u>Regularization</u>: L_2 on fields, L_1^2 on weights (promotes sparsity+homogeneity).
- Partition function estimation: Annealed Importance Sampling.

SGM predicts binding affinity changes upon mutation

Quantitative mapping of protein-peptide affinity landscapes using spectrally-encoded beads Nguyen et al eLife 2019 (Fordyce & Cyert labs)

אוניברסיטת TEL AVIV

תלאביב UNIVERSITY

 $\Delta\Delta G$ predictions for flanking residues reveals important positions

 $X \mid X \mid$

Sequence Position

12345

Т

Ρ

-5 -4 -3 -2 -1

SGM learns sequence motifs shared between evolutionary-unrelated binders

Peptide Library generation

Novelty/Diversity-Quality trade-off

TEL AVIV אוניברסיטת UNIVERSITY תל אביב

Source	Role	#Num sequences
Random peptides	Negative control	36
Literature designs	Positive control	2
Natural peptides	Positive (?)	75
Independent (PSSM)	Baseline design	72
cRBM, $\beta = 1$	Design	180
cRBM, $\beta = 2$	Design	361

21

An integrative PPI inhibitor peptide design protocol

TEL AVIV אוניברסיטת

UNIVERSITY **תלאביב**

22

Step 3: Library filtering by microarray screening experiment

ASVNPEITVTSAETE

PepPerChip Microarray screening

TEL AVIV אוניברסיטת UNIVERSITY תל אביב

Step 3': Library filtering by molecular docking

In-silico docking energy score:

- Ensemble of five bound crystal structures as templates
- Threading with Modeller
- Flexible refinement and scoring using PepCrawler (average of minimum energies).

PepCrawler: a fast RRT-based algorithm for high-resolution refinement and binding affinity estimation of peptide inhibitors Donsky and Wolfson Bioinformatics 2011

אוניברסיטת TEL AVIV

תלאביב UNIVERSITY

Docking energy

Step 4: Experimental validation by FP binding assay

Credit: <u>https://bpsbioscience.com/product-types/biochemical-assay-kits-by-format-type/fluorescence-polarization</u>

אוניברסיטת TEL AVIV

UNIVERSITY **תלאביב**

Step 4: Experimental validation by FP binding assay

				Closest natu	Motif recombination:				
Namo	Soquence		Sourco	closest natu	ADEAIPEIVISKPEEP [Design]		sign]		
Name	Sequence		Source	sequence	equence ADEAIPQIVIDAGADE [TRESK, 5			ISK, 50u	MJ
C16Orf74	KHLDVPDIIITPPTPT	1.17	Natural	KHLDVPDIIITPI	SPSNP PEIVIS SREDN [KCNN3]				
		, i i i i i i i i i i i i i i i i i i i	Positive		TFWI	NPQFKIYL PE	ED [CAH	PN11]	
PVIVIT	MAGPHPVIVITGPHEE	10.2	control	1			/	/	
			Designed		Tagl	л	тм.		1
rbmTRESK	ADEAIPEIVISKPEEP	14	(low T)	ADEAVPQIIISA	AAGAG VGIVIT VTEAE ADGAG VGIVIT VTEAE				
AKAP79	KRMEPIAIIITDTEIS	17.5	Natural	KRMEPIAIIITD					
TRESK	ADEAVPQIIISAEELP	54	Natural	ADEAVEQIIISA	EELP	Homo sapiens	TRESK	0	
			Designed			Pelecanus			
rbmAKAP79	AAGAGVGIVITVTEAE	57	(low T)	AAGAG (GIVITV	TEAE	crispus	AKAP79	2	
			Designed			Pronithecus	TRESK		1
rbmTRESK_2	ADEAIPEITITSAELP	60	(low T)	ADEAIPQITITA			S		
			Docignod						
rhm AKADZO 2		60					100		
TDIMAKAP79_2	ADGAGVGIVIIVIEAE	69	(IOW I)	ADGAGVGIVIIV					
						A Carl	No.		
rbmRIPOR2	ASVSNPEITVTSAETE	79	Designed	QSQSNPEITVTP			THE A		
			Designed				1999 A	5	
rbmRIPOR2_2	HVSSSPRITITPTQHR	200	(low T)	HVSSSPDITATP ⁻	(C-terminal polyp	roline hel	ix expands	
Tubiana*, Adriana-Lifshi				ir	teraction surfac	e at no er	ntropic cost		

substrate to Cr

7/10 designs 3/4 natural compete with binding of

Summary and future directions

- Peptides are attractive candidates for PPI inhibitor design, but design is challenging.
- We proposed and validated an integrative design protocol based on a Sequence Generative Model trained from native binders of the target protein.
- The SGM captures key sequence patterns important for binding, and recombines them to generate novel and diverse peptide binders.
- Flexible molecular docking efficiently complements SGMs by differentiating between weak and strong native binders.

Next steps for Calcineurin:

TEL AVIV אוניברסיטת

תלאביב UNIVERSITY

- Cellular assays
- Display experiments to further optimize binding affinity, multivalent constructs
- Pharmacophore-based drug discovery / HTS via competition

Machine learning for evolutionary-based and physicsinspired protein design: Current and future synergies Cyril Malbranke^{1,2}, David Bikard², Simona Cocco¹, Rémi Monasson¹ and Jérôme Tubiana³

Acknowledgements

Tel Aviv University

Haim Wolfson Mark Rozanov Naama Hurwitz Michael Nissan Yoay Lotem

Maayan Gal Lucia Lifshits Daniel Bar

TAU CS system team Sonia Lichtenzveig Sela

> TEL AVIV אוניברסיטת UNIVERSITY תלאביב

The Hebrew University of Jerusalem

Dina Schneidman-Duhovny Merav Breitbart Lirane Bitton Matan Halfon Shon Cohen Tomer Cohen Edan Patt Ecole Normale Supérieure Rémi Monasson Simona Cocco

Icahn School of Medicine Mount Sinai NY Yi Shi Yufei Xiang Zhe Sang

University of Pittsburgh Kong Chen Li Fan

HFSP