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Molecular phylogenetics
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Reconstruct the evolutionary history of homologous sequences
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Two main paradigms

Distance methods: fast but inaccurate

d @ Start from pairwise distances between sequences.

02

RN o Fast, guaranteed to recover the right tree given the
‘ right distances...

031

a b @ ...but distance estimates are often inaccurate,
doe = 0.4+0.05 40274 03 leading to poor reconstruction.

Maximum likelihood: accurate but slow
@ Given a probabilistic sequence evolution model,
find the tree making the whole set of sequences
most likely.

: @ State of the art accuracy,
T but explores a huge tree space.
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@ Relies on strong simplifying assumptions.
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Deep learning for molecular evolution
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A new paradigm for phylogenetic reconstruction:
learn a function predicting the tree from homologous sequence.
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Deep learning for molecular evolution
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A new paradigm for phylogenetic reconstruction:
learn a function predicting the tree from homologous sequence.
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Deep learning for molecular evolution
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A new paradigm for phylogenetic reconstruction:
learn a function predicting the tree from homologous sequence.

Motivation: faster and/or dealing with more complex models.
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But how is it ok to learn from simulated data?

An unusual setting for supervised learning

@ Usually: perform induction from real-world data.

@ Here: we have access to a forward process

Fast simulation
Tree ——————— Homologous sequences

and will use supervised learning to reverse it.

Intuition: conceptually not so different from maximum likelihood

o Likelihood optimization is too expensive.

@ Instead, we learn a map from the input to a solution.
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Concrete issues
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We need a learnable function that:

@ outputs a phylogenetic tree.

o takes as input a set of homologous sequences,
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We need a learnable function that:

@ outputs a phylogenetic tree.
— use evolutionary distances as a proxy.

o takes as input a set of homologous sequences,
— use self-attention (dual to contact prediction).
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Phyloformer overview
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Phyloformer overview
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One-hot encoding for aligned sequences

A single sequence:
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A set of aligned sequences:

Our alphabet is actually {A, R, N, D, ..., Y, V, X, -} so dy = 22.
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Encoding pairs of aligned sequences

pairwise average
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@ We choose to work on pairs of sequences (predict distance for each).
@ We represent each pair by simply averaging over sequences.

A A C G T
A T C C T
A 1 05 0 0 0
c 0 0 1 05 0
T 0 05 0 0 1
G 0 0 0 05 0
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Encoding pairs of aligned sequences

pairwise average

@ We choose to work on pairs of sequences (predict distance for each).
@ We represent each pair by simply averaging over sequences.

A A C G T
A T C C T
A 1 05 0 0 0
c 0 0 1 05 0
T 0 05 0 0 1
0 0 0 05 0

—~ O

@ We now have a set of '2’) x L amino acids encoded as R9=22 vectors.
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Permutation invariance and equivariance

If we permute input sequences:

@ output distances should follow the same permutation (equivariance):

f(m((s1,82)s -, (sn=1,5n))) = 7(F((s1,%2),- -, (Sn—1,5n)))-

@ output tree should be the same (invariance):

TQPRLPTC
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TLGRSPSC
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TQPRAKTC

TLGR:
TQPSY

rapnLpe
Issues:
@ This has no reason to be true in general (e.g. linear function).

o Need to retain some expressivity.
E.g. average provides invariance but discards a lot of information.
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Expressive, permutation-equivariant functions with
MSA Transformers
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Self-attention in a nutshell

General idea

@ Takes as input an unordered set.
@ Updates each element as a linear combination of all of them.

@ OQutput is a new representation of the same set. lterate.

Learnable parameters

> Key function —» Value function

> Dot product » Update

Updates

@ Update relies on three learnable functions: Query, Key, Value.

@ Query(a) and Key(b) determine the weight w,p, of b in the update of a.
@ ais replaced by ), waeValue(e)
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The effect of self-attention

“Attention is all you need” (Transformer paper, Vaswani et al. 2017)

@ Query and Key provide attention weights: how much a should pay
attention to b in its update.

@ Major impact in the ML literature.

v

Back to our issues

@ All three functions act on elements: provides equivariance, modularity
to any cardinal.

@ Starts from independant representations, enhanced by information
from all other pairs at each iteration
— lteratively builds a set-aware representation for each pair.

V.
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Axial attention

@ We need equivariance both across pairs and sites.

@ Alternate between column- and row-wise attention.

For each site, update each pair using all others.
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Axial attention

@ We need equivariance both across pairs and sites.

@ Alternate between column- and row-wise attention.
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For each pair, update each site using all others.
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Final steps (after the transformer blocks)

Pool across sites to obtain a single value per pair.

@ Loss function happens at this level:
compare to true distance on simulated data, backpropagate.

Representation is optimized to yield good distance estimates.

Then use a distance method to build the tree (not end-to-end).
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Results: a trade-off between distance and ML

@ Train on 200,000 alignments of n = 20, L = 200.
o BD-generated trees, AliSim+(LG-GC) MSAs.
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o Intermediate performance between distance- and ML-based methods.
@ 100x faster than ML, 10x slower than distance.
@ Much more memory intensive (~3.5Gb for 100 leaves).
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The current setting may be too easy

0.200 A
£ 0.175 A
@
§ 0.150
©
3
5 0.125 4
(%]
S
¢ 0.100 A
; Method
g 0.075 A bionj
£ pf.fastme
£ 0.0501 fastme
2 0.025 hm.fastme
§ . igtree
0.000 fasttree

T T T T T T T T T T T T T T T T T T T T T
K o

T T T T T
SOR DD PP RLEREROS DD PSP O O o D
WP P DD ER PPN DD PP PPN

Number of leaves

@ FastTree is actually as good as IQTREE on current simulations.
@ Not easy to find a hard but realistic setting.
@ Phyloformer is still x2 faster than FastTree.
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Discussion

@ Exploit self-attention to predict evolutionary distances among
homologous sequences.

@ Currently: intermediate trade-off between likelihood and distance
methods.

Current priorities

@ Robustness: model, training data.

@ Uncertainty assessment.

Future work

@ Accuracy, scalability.

@ More complex evolution models, indels.

o Related problems: reconciliation, diversification, phylodynamics...
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Thanks!

Site-level attention
(for each pair separately, update all sites)
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« Fully connected layer
(same on each pair)

o Average across sites
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Architecture
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Evosimz model
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o Complex model: 9

different substitution
matrices, heterogeneities
across sites and
branches.

12 different parameters
combinations.
Phyloformer trained only
on the easiest.

Best performances across
all methods on 9 out of
the 12 datasets.
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WAG model
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