Phyloformer: towards fast and accurate phylogeny estimation with self-attention networks

Laurent Jacob

BeVAS workshop, April 18th 2023

Luca Nesterenko

Bastien Boussau

Reconstruct the evolutionary history of homologous sequences

Two main paradigms

Distance methods: fast but inaccurate

- Start from pairwise distances between sequences.
- Fast, guaranteed to recover the right tree given the right distances...
- ...but distance estimates are often inaccurate, leading to poor reconstruction.

Maximum likelihood: accurate but slow

- Given a probabilistic sequence evolution model, find the tree making the whole set of sequences most likely.
- State of the art accuracy, but explores a huge tree space.
- Relies on strong simplifying assumptions.

Deep learning for molecular evolution

A new paradigm for phylogenetic reconstruction: learn a function **predicting the tree from homologous sequence**.

Deep learning for molecular evolution

A new paradigm for phylogenetic reconstruction: learn a function **predicting the tree from homologous sequence**.

Deep learning for molecular evolution

A new paradigm for phylogenetic reconstruction: learn a function **predicting the tree from homologous sequence**. Motivation: faster and/or dealing with more complex models.

But how is it ok to learn from simulated data?

An unusual setting for supervised learning

• Usually: perform induction from real-world data.

• Here: we have access to a forward process

 $\mathsf{Tree} \xrightarrow{\mathsf{Fast simulation}} \mathsf{Homologous sequences}$

and will use supervised learning to reverse it.

Intuition: conceptually not so different from maximum likelihood

- Likelihood optimization is too expensive.
- Instead, we learn a map from the input to a solution.

We need a learnable function that:

- outputs a phylogenetic tree.
- takes as input a set of homologous sequences,

We need a learnable function that:

- outputs a phylogenetic tree.
 - \rightarrow use evolutionary distances as a proxy.
- takes as input a set of homologous sequences,
 - \rightarrow use self-attention (dual to contact prediction).

Phyloformer overview

Phyloformer overview

One-hot encoding for aligned sequences

A single sequence:

	Α	Α	С	G	Т	
Α	1	1	0	0	0	
С	0	0	1	0	0	
Т	0	0	0	0	1	
G	0	0	0	1	0	

A set of aligned sequences:

Our alphabet is actually {A, R, N, D, ..., Y, V, X, -} so $d_0 = 22$.

Encoding **pairs** of aligned sequences

We choose to work on pairs of sequences (predict distance for each).
We represent each pair by simply averaging over sequences.

	Α	Α	С	G	Т	
	Α	Т	С	С	Т	
Α	1	0.5	0	0	0	
С	0	0	1	0.5	0	
Т	0	0.5	0	0	1	
G	0	0	0	0.5	0	

Encoding **pairs** of aligned sequences

We choose to work on pairs of sequences (predict distance for each).We represent each pair by simply averaging over sequences.

• We now have a set of $\binom{n}{2} \times L$ amino acids encoded as $\mathbb{R}^{d=22}$ vectors.

Permutation invariance and equivariance

If we permute input sequences:

• output distances should follow the same permutation (equivariance):

$$f(\pi((s_1, s_2), \ldots, (s_{n-1}, s_n))) = \pi(f((s_1, s_2), \ldots, (s_{n-1}, s_n))).$$

• output tree should be the same (invariance):

ssues:

- This has no reason to be true in general (e.g. linear function).
- Need to retain some expressivity.

E.g. average provides invariance but discards a lot of information.

Laurent Jacob

Expressive, permutation-equivariant functions with MSA Transformers

General idea

- Takes as input an unordered set.
- Updates each element as a linear combination of all of them.
- Output is a new representation of the same set. Iterate.

Updates

- Update relies on three learnable functions: Query, Key, Value.
- Query(a) and Key(b) determine the weight w_{ab} of b in the update of a.
- a is replaced by $\sum_{e} w_{ae} Value(e)$

Phyloformer

The effect of self-attention

"Attention is all you need" (Transformer paper, Vaswani *et al.* 2017)

- Query and Key provide attention weights: how much a should pay attention to b in its update.
- Major impact in the ML literature.

Back to our issues

- All three functions act on elements: provides equivariance, modularity to any cardinal.
- Starts from independant representations, enhanced by information from all other pairs at each iteration
 - \rightarrow Iteratively builds a set-aware representation for each pair.

- We need equivariance both across pairs and sites.
- Alternate between column- and row-wise attention.

For each site, update each pair using all others.

- We need equivariance both across pairs and sites.
- Alternate between column- and row-wise attention.

For each pair, update each site using all others.

Final steps (after the transformer blocks)

- Pool across sites to obtain a single value per pair.
- Loss function happens at this level: compare to true distance on simulated data, backpropagate.
- Representation is optimized to yield good distance estimates.
- Then use a distance method to build the tree (not end-to-end).

Results: a trade-off between distance and ML

Setting

- Train on 200,000 alignments of n = 20, L = 200.
- BD-generated trees, AliSim+(LG-GC) MSAs.

- Intermediate performance between distance- and ML-based methods.
- 100x faster than ML, 10x slower than distance.
- Much more memory intensive (\sim 3.5Gb for 100 leaves).

Laurent Jacob

Phyloformer

The current setting may be too easy

- FastTree is actually as good as IQTREE on current simulations.
- Not easy to find a hard but realistic setting.
- Phyloformer is still ×2 faster than FastTree.

Laurent Jacob

Summary

- Exploit self-attention to predict evolutionary distances among homologous sequences.
- Currently: intermediate trade-off between likelihood and distance methods.

Current priorities

- Robustness: model, training data.
- Uncertainty assessment.

Future work

- Accuracy, scalability.
- More complex evolution models, indels.
- Related problems: reconciliation, diversification, phylodynamics...

Evosimz model

- Complex model: 9 different substitution matrices, heterogeneities across sites and branches.
- 12 different parameters combinations. Phyloformer trained only on the easiest.
- Best performances across all methods on 9 out of the 12 datasets.

Laurent Jacob

Training on PAM, testing on WAG: same trend.