Within-host dynamics of antibiotic
resistance

Pete Czuppon

(in collaboration with Troy Day, Florence Débarre & Frangois Blanquart)

BEVAS, Lausanne, April 2023




Antibiotic resistance




Antibiotic resistance — a public health problem

Currently: ~ 1 million deaths per year
(Murray et al. (2022), Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis, The
Lancet)

Deaths attributable to antimicrobial resistance every year by 2050
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Resistance always evolves
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Crosses indicate the appearance of a resistant strain



Frapper fort et frapper vite.
(Hit hard and hit fast.)

Paul Ehrlich (1913)
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...1f you use penicillin, use
enough.
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Is this strategy optimal to limit the
evolution of antibiotic resistance?



Arguments exist in favor and against this strategy in the context of
resistance evolution

Ankomah & Levin (2014), PNAS
‘‘The results of this computer-assisted theoretical
study support this century-old recommendation.’’



Arguments exist in favor and against this strategy in the context of
resistance evolution

Ankomah & Levin (2014), PNAS
‘‘The results of this computer-assisted theoretical
study support this century-old recommendation.’’

Day & Read (2016), PLoS CB

‘‘“Theory does not support using the highest tolerable
dose as a rule of thumb.’’



Predicting the establishment
probability of a resistant subcolony
during treatment



Modeling antibiotic treatment

deterministic growth rate = 5 — 6 — a(c)
antibiotic response a(c) is modeled by a sigmoid (e.g. Regoes et al., 2004)



Modeling antibiotic treatment

deterministic growth rate = 5 — 6 — a(c)
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Modeling bacterial population dynamics

» per capita birth (3) and death rate (6)

» density regulation of bacteria (through competition, ~)

» reducing birth rate (resource competition)
» increasing death rate (toxin production)
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Modeling bacterial population dynamics

» per capita birth (3) and death rate (¢)

» density regulation of bacteria (through competition, ~)
» reducing birth rate (resource competition)
increasing death rate (toxin production)

» antibiotic treatment (a(c))
biostatic (reducing birth rate)
» biocidal (increasing death rate)

Example: birth competition and biocidal treatment
(x(t) = bacterial concentration at time t)

birth rate: A = max (0, 8 — yx(t))
death rate: p=109+a(c)



Deterministic population dynamics

birth competition + biocidal treatment
Xi(t) = A(t) — p(t) = xi(t) (max (0, 5 — (Xs(t) + Xr(t))) — di — ci(c))

» resistance: ag(c) < as(c) for all concentrations ¢ > 0
» cost of resistance: 35 — ds > 3z — Or



Deterministic population dynamics

birth competition + biocidal treatment

Xi(t) = A(t) — u(t) = xi(t) (max (0, 5 — y(Xs(t) + Xg(t))) — 6 — ai(c))
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Survival probability until the end of treatment

...continuous-time branching process theory (Kendall, 1948; Uecker & Hermisson, 2011)

Survival probability ¢(7) for a treatment of duration = when
started with a single resistant cell is given by
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Survival probability until the end of treatment

...continuous-time branching process theory (Kendall, 1948; Uecker & Hermisson, 2011)
Example: birth regulation and biocidal treatment

Abbreviations

» par capita maximal growth rate of strain Rk: pr, = S, — 0, — ar(C)
» selection coefficient: s = pg — ps > 0!
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Example: birth regulation and biocidal treatment

Abbreviations

» par capita maximal growth rate of strain Rk: pr, = S, — 0, — ar(C)
» selection coefficient: s = pg — ps > 0!
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Survival probability until the end of treatment

...continuous-time branching process theory (Kendall, 1948; Uecker & Hermisson, 2011)
Example: birth regulation and biocidal treatment

Abbreviations

» par capita maximal growth rate of strain Rk: pr, = S, — 0, — ar(C)
» selection coefficient: s = pg — ps > 0!

Survival probability (7 = o)
1
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Analogous expressions can be obtained for death competition + biostatic/biocidal
treatment
birth competition + biostatic treatment is more complicated



Survival probability

birth competition

survival probability

MlCR = 20X Mle
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Survival probability

birth competition

MlCR = 20X Mle
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Predicting the location of the maximal
risk of resistance establishment



Maximizing the survival probability
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Maximizing the survival probability
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And hence
flc)=0 &  f)=o0

Example: birth competition + biocidal treatment

as(c) Br s(c) Br s(c)?
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~0 for weak selection




Maximizing the survival probability

1 / f'(c)
O R S ()R

And hence
p'(c)=0 < flle)=o0

Example: death competition + biostatic treatment
...not possible to resolve

But: we can derive a condition for a critical concentration ¢ below which
the maximizing concentration has to be!



Maximizing the survival probability
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And hence
p'(c)=0 &  f)=o0

Example: death competition + biostatic treatment
...not possible to resolve

But: we can derive a condition for a critical concentration ¢ below which
the maximizing concentration has to be!

¢ =inf{c: fBs — as(c) = 0}



Maximizing the survival probability

death competition + biostatic treatment

¢ = inf{C : PBs — Oés(C) = O}

This threshold is independent of the resistant type!

survival probability
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Maximizing the survival probability

death competition + biostatic treatment

¢ = inf{C : PBs — Oés(C) = O}

This threshold is independent of the resistant type!
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Maximizing the survival probability

death competition + biostatic treatment
¢c= inf{C : Bs — Oés(C) = O}

This threshold is independent of the resistant type!
0.6

¢

o
tn
|

0.4 —

MICr = 5x MICs

survival probability

1074 03 02 01! 10°

anitibiotic concentration



survival # establishment
Does survival matter?



The resistant subpopulation size at the end of treatment

birth competition

MICr = 10x MICs
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The resistant subpopulation size at the end of treatment
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The resistant subpopulation size at the end of treatment

concentrations around MICs are worst

= hitting hard might be a good rule of thumb!’

"my personal conclusion, which is not shared by all of my coauthors



Summary & Conclusion

» continuous-time branching processes allow us to compute the
survival probability explicitly for several scenarios of (self-limited)
bacterial population dynamics
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Summary & Conclusion

» continuous-time branching processes allow us to compute the
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» ...and further helps to derive conditions for the
resistance-survival-maximizing antibiotic concentration

» survival is not necessarily clinically relevant
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» the resistant subpopulation size is maximized typically at the MIC;
(in our model)
we ran a lot of additional scenarios (immune response, different antibiotic response curves,
different population dynamical models) and the result is robust (in all of our considered
parameter ranges ... but we don't have analytical solutions in those cases)
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