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Antibiotic resistance



Antibiotic resistance – a public health problem
Currently: ∼ 1 million deaths per year
(Murray et al. (2022), Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis, The
Lancet)



Resistance always evolves

Kennedy et al. (2018), PNAS

Crosses indicate the appearance of a resistant strain



Frapper fort et frapper vite.

(Hit hard and hit fast.)
Paul Ehrlich (1913)

...if you use penicillin, use

enough.
Alexander Fleming (1945)

Is this strategy optimal to limit the
evolution of antibiotic resistance?
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Arguments exist in favor and against this strategy in the context of
resistance evolution

Ankomah & Levin (2014), PNAS
‘‘The results of this computer-assisted theoretical

study support this century-old recommendation.’’

Day & Read (2016), PLoS CB
‘‘Theory does not support using the highest tolerable

dose as a rule of thumb.’’
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Predicting the establishment
probability of a resistant subcolony

during treatment



Modeling antibiotic treatment

deterministic growth rate = β − δ − α(c)
antibiotic response α(c) is modeled by a sigmoid (e.g. Regoes et al., 2004)
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Modeling bacterial population dynamics

I per capita birth (β) and death rate (δ)

I density regulation of bacteria (through competition, γ)
I reducing birth rate (resource competition)
I increasing death rate (toxin production)

I antibiotic treatment (α(c))

I

Example: birth competition and biocidal treatment
(x(t) = bacterial concentration at time t)

birth rate: λ = max (0, β − γx(t))
death rate: µ = δ + α(c)
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Deterministic population dynamics
birth competition + biocidal treatment

xi(t) = λ(t)− µ(t) = xi(t) (max (0, βi − γ(xS(t) + xR(t)))− δi − αi(c))

Assumptions

I resistance: αR(c) ≤ αS(c) for all concentrations c ≥ 0
I cost of resistance: βS − δS > βR − δR



Deterministic population dynamics
birth competition + biocidal treatment

xi(t) = λ(t)− µ(t) = xi(t) (max (0, βi − γ(xS(t) + xR(t)))− δi − αi(c))
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Survival probability until the end of treatment
. . . continuous-time branching process theory (Kendall, 1948; Uecker & Hermisson, 2011)

Survival probability ϕ(τ) for a treatment of duration τ when
started with a single resistant cell is given by

ϕ(τ) =
1

1 +
∫ τ

0 µR(t) exp
(∫ t

0(λR(t′)− µR(t′))dt′
)
dt

Example: birth regulation and biocidal treatment
Abbreviations

I par capita maximal growth rate of strain k: ρk = βk − δk − αk(c)
I selection coe�cient: s = ρR − ρS > 0!

Survival probability (τ =∞)

ϕ =
1

1 + δR+αR
ρR

(
xS(0)γ
s + 1

)
Analogous expressions can be obtained for death competition + biostatic/biocidal
treatment
birth competition + biostatic treatment is more complicated
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birth competition

antibiotic concentration
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Predicting the location of the maximal
risk of resistance establishment



Maximizing the survival probability

ϕ(c) = 1
1 + f (c)

⇒ ϕ′(c) = − f ′(c)
(1 + f (c))2

And hence
ϕ′(c) = 0 ⇔ f ′(c) = 0

Example: birth competition + biocidal treatment
α′S(c)
α′R(c)

= 1 + βR s(c)
ρR(c)(δR + αR(c))

+
βR s(c)2

xS(0)γρR(c)(δR + αR(c))︸ ︷︷ ︸
≈0 for weak selection
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. . . not possible to resolve
But: we can derive a condition for a critical concentration c̃ below which
the maximizing concentration has to be!

c̃ = inf{c : βS − αS(c) = 0}
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Maximizing the survival probability
death competition + biostatic treatment

c̃ = inf{c : βS − αS(c) = 0}

MICR = 20× MICS

c̃

This threshold is independent of the resistant type!
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Maximizing the survival probability
death competition + biostatic treatment

c̃ = inf{c : βS − αS(c) = 0}

MICR = 10× MICS

c̃

This threshold is independent of the resistant type!
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Maximizing the survival probability
death competition + biostatic treatment

c̃ = inf{c : βS − αS(c) = 0}

MICR = 5× MICS

c̃

This threshold is independent of the resistant type!
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survival 6= establishment
Does survival matter?



The resistant subpopulation size at the end of treatment
birth competition
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The resistant subpopulation size at the end of treatment
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concentrations around MICS are worst

⇒ hitting hard might be a good rule of thumb!1

1my personal conclusion, which is not shared by all of my coauthors



Summary & Conclusion

I continuous-time branching processes allow us to compute the
survival probability explicitly for several scenarios of (self-limited)
bacterial population dynamics

I . . . and further helps to derive conditions for the
resistance-survival-maximizing antibiotic concentration

I survival is not necessarily clinically relevant
→ size of the resistant subpopulation

I the resistant subpopulation size is maximized typically at the MICS
(in our model)
we ran a lot of additional scenarios (immune response, di�erent antibiotic response curves,
di�erent population dynamical models) and the result is robust (in all of our considered
parameter ranges . . . but we don’t have analytical solutions in those cases)
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Thank you for your attention!
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