Influenza: Limited predictability of evolution Ecology of host and pathogen

Pierre Barrat-Charlaix

Universität Basel The Center for Molecular Life Sciences Group of Richard Neher

Collaborators:

John Huddleston

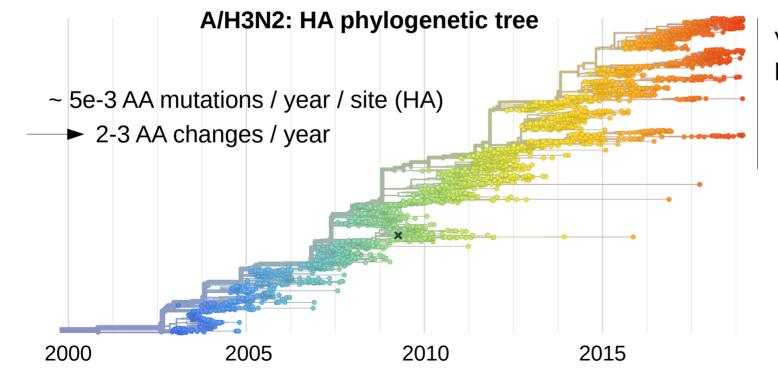
Trevor Bedford

Human seasonal influenza virus

~ hundreds of million cases / year → 5-10 % of humans
In constant evolution (especially surface proteins HA & NA)

Generation time ~ 1 week

→ Pop. size ~ 10e6 - 10e7



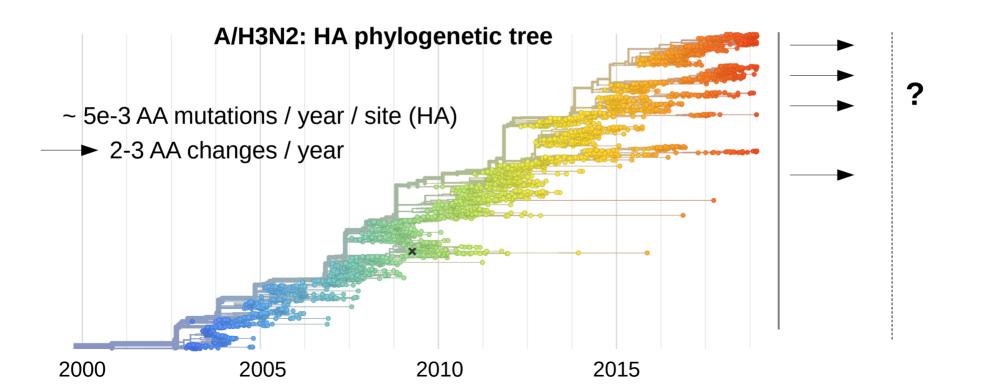
Variability in the present population

Human seasonal influenza virus

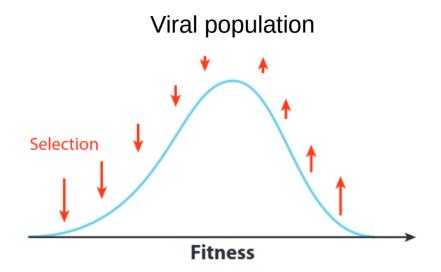
~ hundreds of million cases / year → 5-10 % of humans
In constant evolution (especially surface proteins HA & NA)

Generation time ~ 1 week

→ Pop. size ~ 10e6 - 10e7



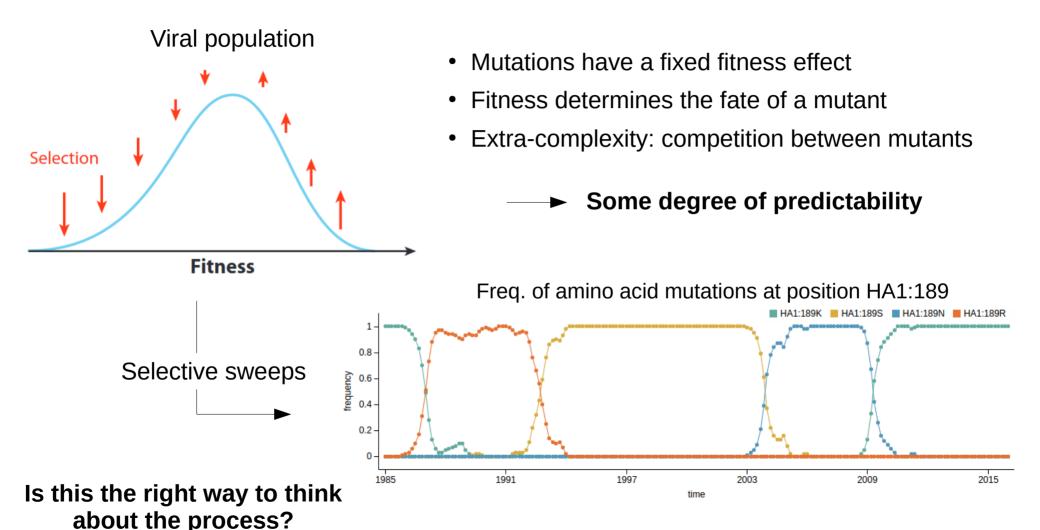
Traditional approach: travelling fitness wave



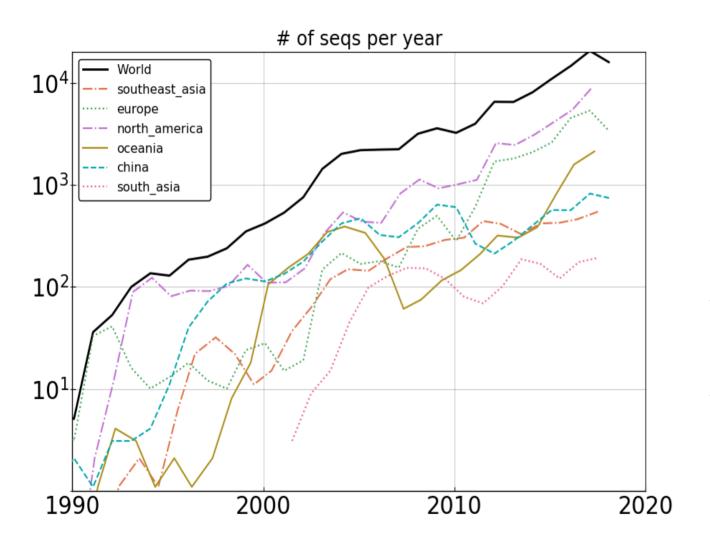
- Mutations have a fixed fitness effect
- Fitness determines the fate of a mutant
- Extra-complexity: competition between mutants

→ Some degree of predictability

Traditional approach: travelling fitness wave



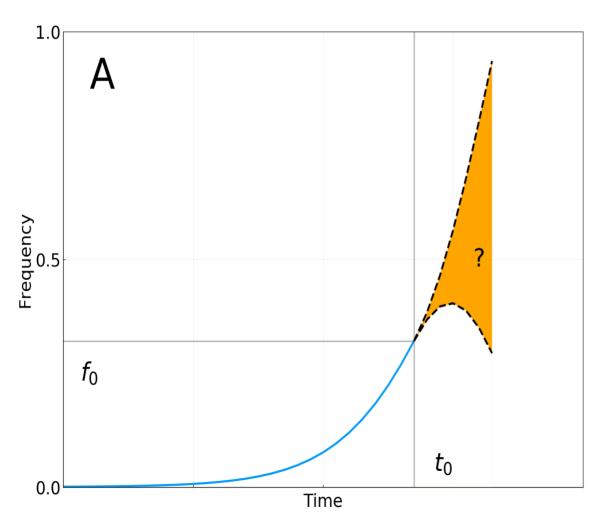
Data



Time-binning of the past sequences by 1 month intervals

- Snapshots of the population
- Frequency trajectories

Simple analysis: predictability of influenza

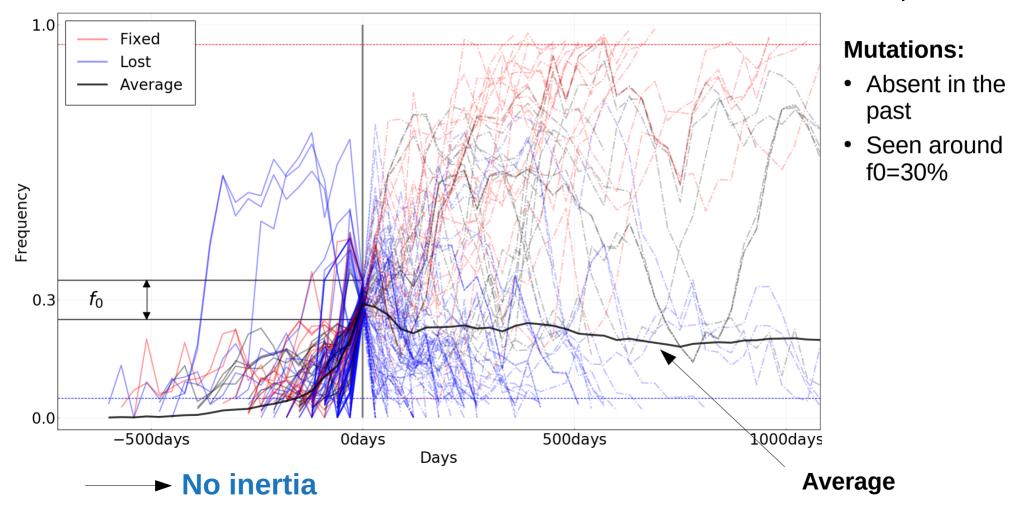


Frequency trajectories of amino acid mutations

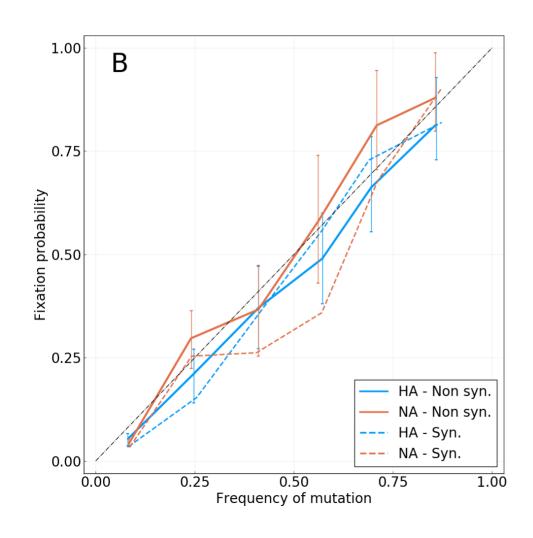
Statistics from all sequences since 2000 (~20 years of data)

Inertia of trajectories

Influenza H3N2, HA protein



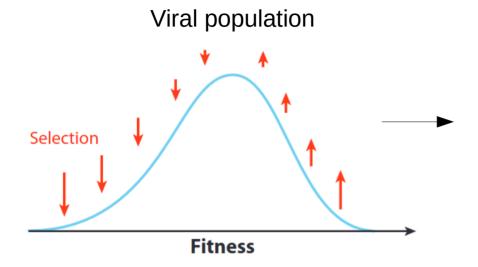
Probability of fixation

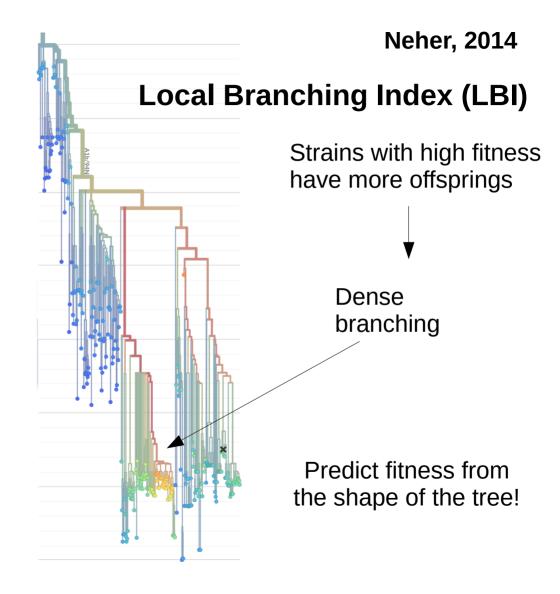


For rising trajectories

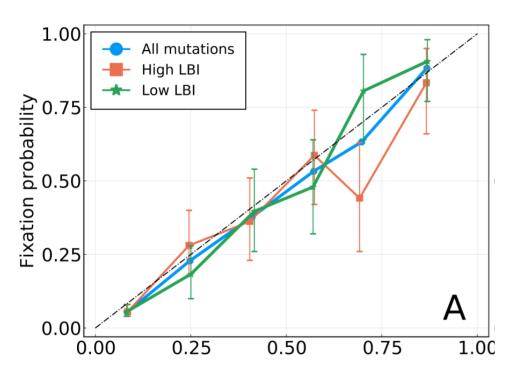
No signs of selection!

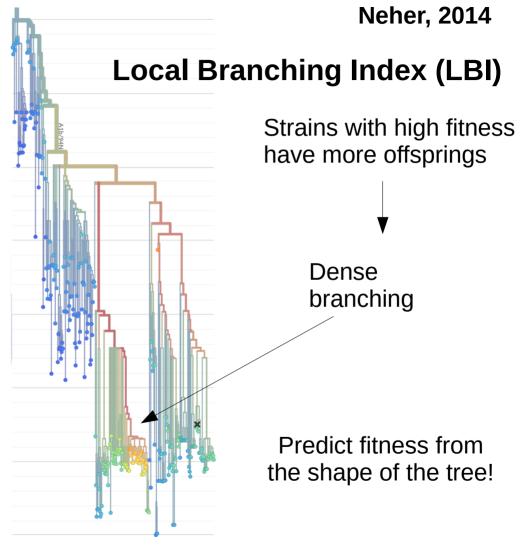
Using a proxy for fitness



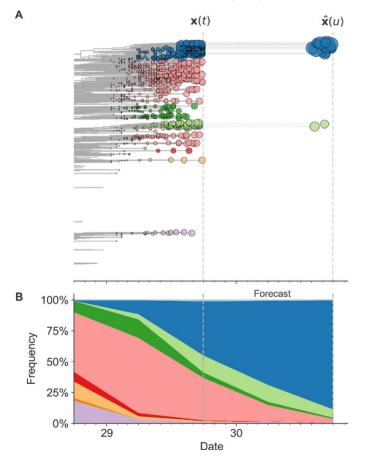


Using a proxy for fitness

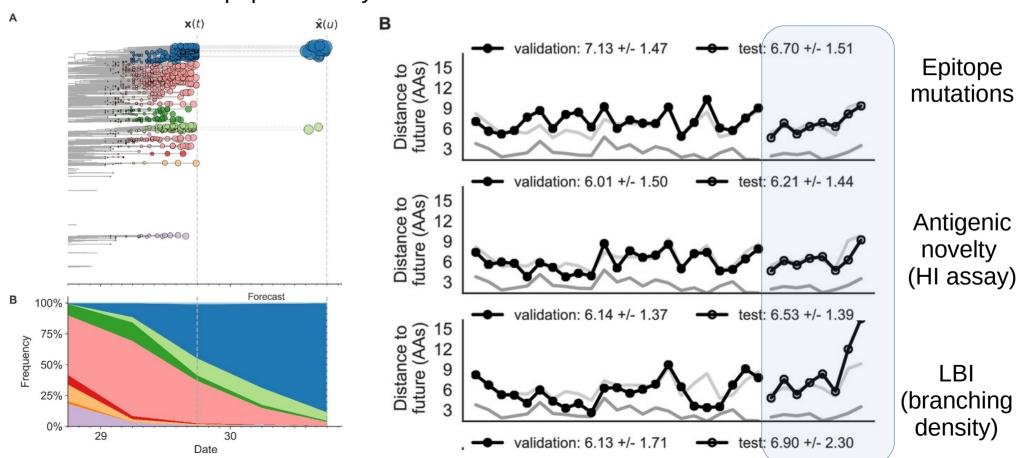




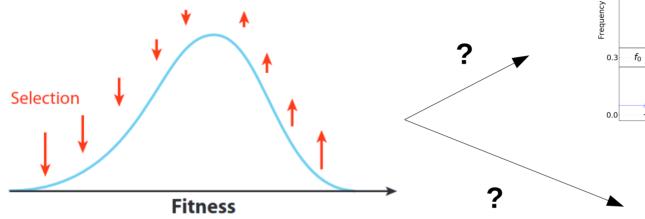
- Predict a fitness for each strain --> fit model to data (LBI, antigenic novelty, ...)
- Forecast future population 1 year ahead



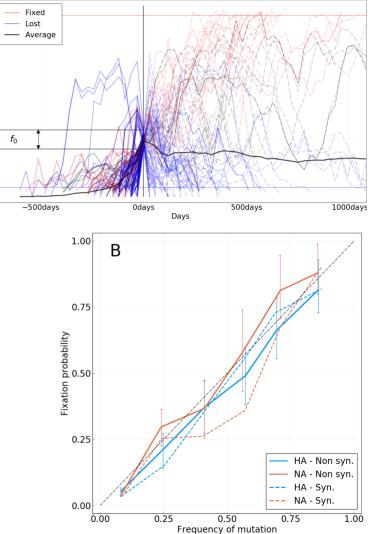
- Predict a fitness for each strain --> fit model to data (LBI, antigenic novelty, ...)
- Forecast future population 1 year ahead



Limited predictability



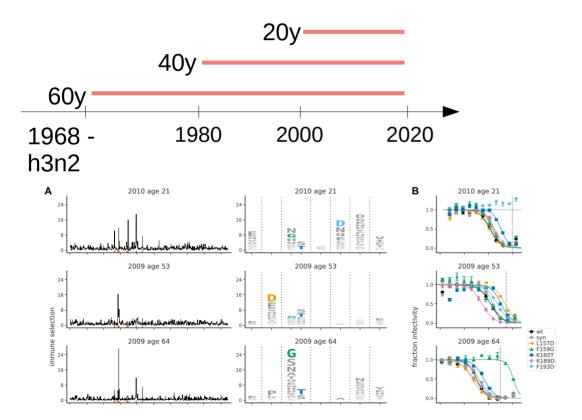
Qualitative difference between model and observations



Adaptive immunity and expiring fitness

Adaptation is driven by immunity

- Most adaptive mutations escape immunity
- They only escape a fraction of the host population



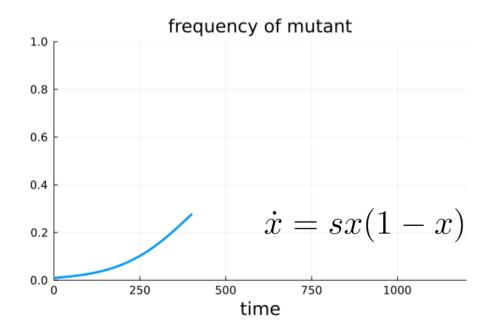
Adaptive immunity of hosts

- fitness advantage expires before fixation
- "ecology": organisms shape their environment

Adaptive immunity and expiring fitness

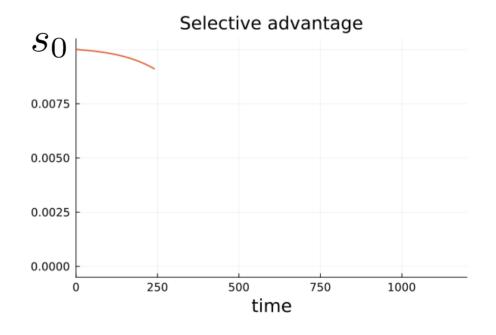
Adaptation is driven by immunity

- Most adaptive mutations escape immunity
- They only escape a fraction of the host population



Adaptive immunity of hosts

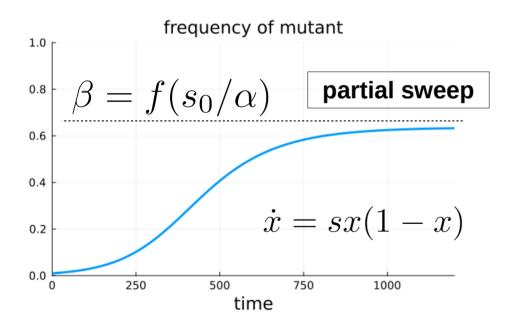
- fitness advantage expires before fixation
- "ecology": organisms shape their environment



Adaptive immunity and expiring fitness

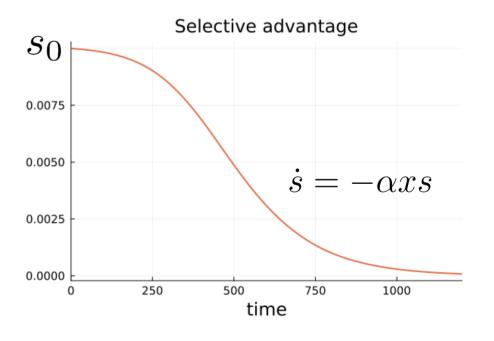
Adaptation is driven by immunity

- Most adaptive mutations escape immunity
- They only escape a fraction of the host population



Adaptive immunity of hosts

- fitness advantage expires before fixation
- "ecology": organisms shape their environment



Explicit model: SIR model

- N strains: *a,b* in (1 ... N)
- For each strain, hosts are susceptible, infected or immune

$$\dot{S}^a = -\alpha S^a \sum_{b=1}^{N} K_{ab} I^b + \gamma (1 - S^a),$$

$$\dot{I}^a = \alpha S^a I^a - \delta I^a.$$

$$\alpha \rightarrow$$
 rate of infection

$$\delta$$
 \rightarrow duration of infection (rate)

$$\gamma$$
 \longrightarrow population turnover

$$K_{ab} riangleright$$
 cross-immunity

Explicit model: SIR model

- N strains: *a,b* in (1 ... N)
- For each strain, hosts are susceptible, infected or immune

$$\dot{S}^a = -\alpha S^a \sum_{b=1}^{N} K_{ab} I^b + \gamma (1 - S^a),$$

$$\dot{I}^a = \alpha S^a I^a - \delta I^a.$$

$$\alpha \longrightarrow {\rm rate\ of\ infection}$$

$$\delta$$
 \rightarrow duration of infection (rate)

$$\gamma$$
 \longrightarrow population turnover

$$K_{ab} riangleright$$
 cross-immunity

Equilibrium

$$S = \frac{1}{\alpha}$$

$$I = \frac{\gamma}{\delta} (1 - \delta/\alpha) \mathbf{K}^{-1} \vec{1}$$

Partial sweep with SIR model

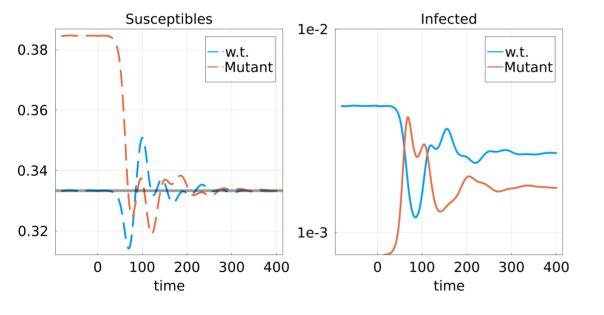
(b = 0.7, f = 0.8)

One wild-type virus, one mutant

 $K = egin{bmatrix} 1 & b \\ f & 1 \end{bmatrix}$

cross-immunity

Initially, **no mutant** $I^{mut}=0$ - At t = 0, introduce mutant



Partial sweep with SIR model

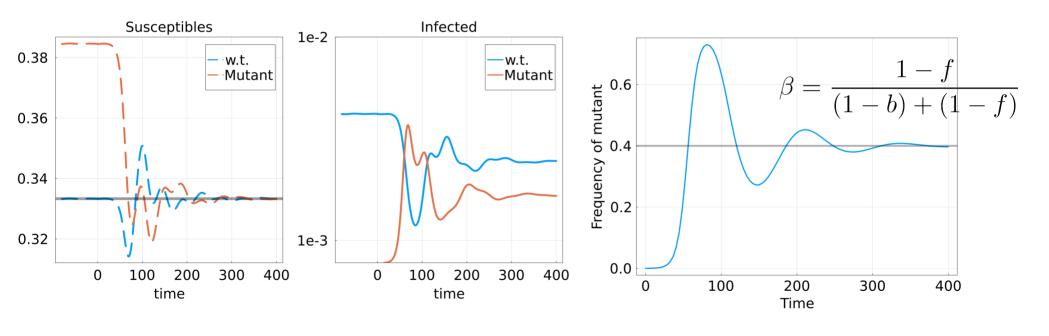
One wild-type virus, one mutant ——

$$\longrightarrow K = \begin{bmatrix} 1 & b \\ f & 1 \end{bmatrix}$$

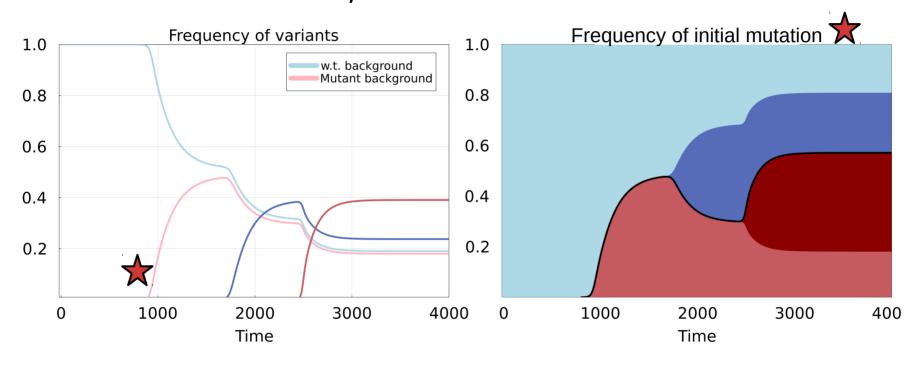
$$(b = 0.7, f = 0.8)$$

cross-immunity

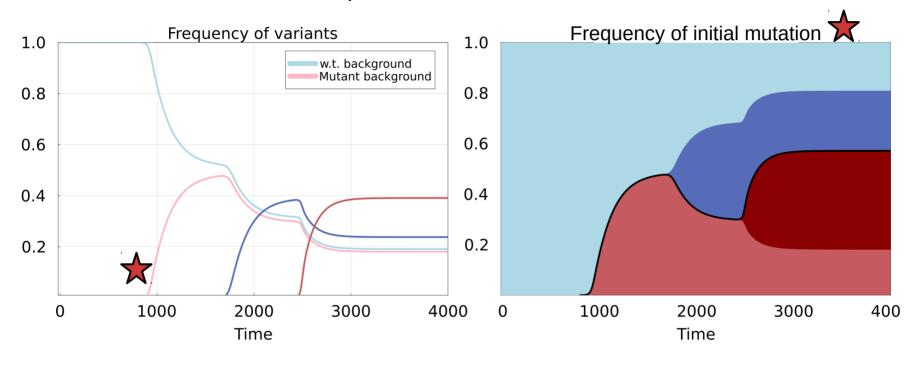
Initially, no mutant $I^{mut}=0$ - At $\emph{t}=\emph{0}$, introduce mutant



New variants appear at rate ρ



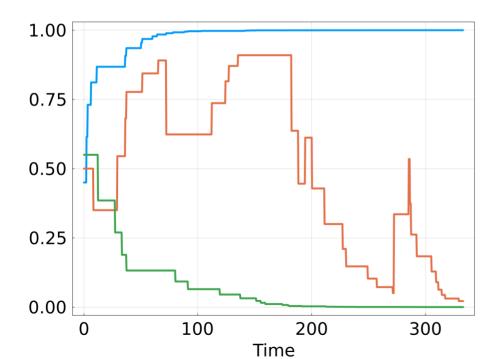
New variants appear at rate ρ



Limit case: non overlapping partial sweeps

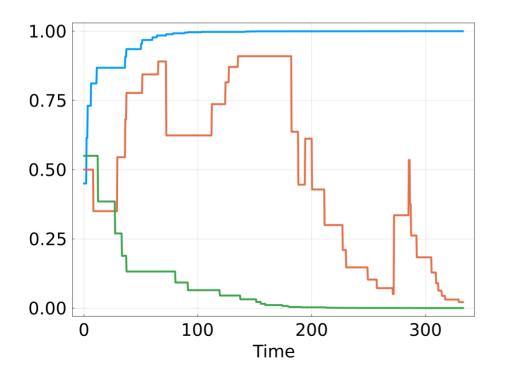
$$x_{t+1} = x_t + \begin{cases} \beta(1 - x_t) & \text{with prob.} \quad x_t, \\ -\beta x_t & \text{with prob.} \quad 1 - x_t, \end{cases}$$

$$x_{t+1} = x_t + \begin{cases} \beta(1 - x_t) & \text{with prob.} \quad x_t, \\ -\beta x_t & \text{with prob.} \quad 1 - x_t, \end{cases}$$



 $\langle \Delta x \rangle = 0$ \longrightarrow Low predictability

$$x_{t+1} = x_t + \begin{cases} \beta(1 - x_t) & \text{with prob.} \quad x_t, \\ -\beta x_t & \text{with prob.} \quad 1 - x_t, \end{cases}$$



$$\langle \Delta x \rangle = 0$$
 - Low predictability

Timescales

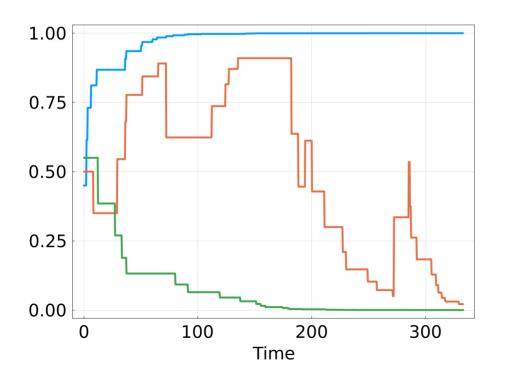
$$\langle \Delta x^2 \rangle = \rho \langle \beta^2 \rangle x (1 - x)$$

timescale $N_e^{-1}=T^{-1}\sim \rho\langle\beta^2\rangle$ $\rho^{-1}\sim 15$ (~4 partial sweeps/year)

$$\beta \sim 0.3 \longrightarrow T \sim 150 \sim 3y$$

H3N2 influenza $- T_{MRCA} \sim 6y$

$$x_{t+1} = x_t + \begin{cases} \beta(1 - x_t) & \text{with prob.} \quad x_t, \\ -\beta x_t & \text{with prob.} \quad 1 - x_t, \end{cases}$$



$$\langle \Delta x \rangle = 0$$
 \longrightarrow Low predictability

Timescales

$$\langle \Delta x^2 \rangle = \rho \langle \beta^2 \rangle x (1 - x)$$

timescale $N_e^{-1}=T^{-1}\sim \rho\langle\beta^2\rangle$ $\rho^{-1}\sim 15$ (~4 partial sweeps/year)

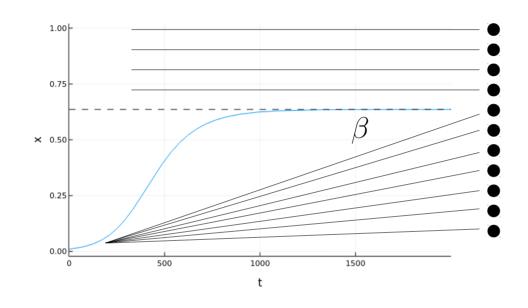
$$\beta \sim 0.3 \longrightarrow T \sim 150 \sim 3y$$

H3N2 influenza $- T_{MRCA} \sim 6y$

Higher moments: similar to neutral drift

$$\langle \Delta x^3 \rangle = \rho \langle \beta^3 \rangle x (1 - x) (1 - 2x)$$

Shape of the phylogeny: multiple mergers

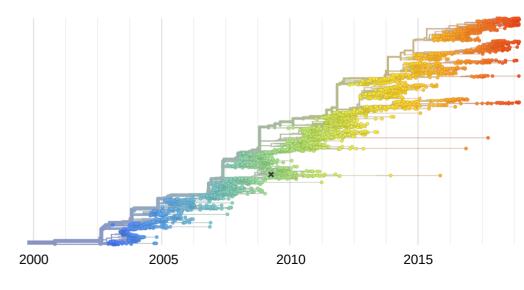


- Multiple mergers
- Ladder-like phylogenies

Rate of **k**-coalescence among **n** lineages

$$\Lambda_n(k) = \rho \binom{n}{k} \beta^k (1 - \beta)^{n-k}$$

Lambda coalescent



Summary

H3N2Influenza:

- Predictibility of evolution is surprisingly low
- Qualitatively different from models

Partial sweeps

- Adaptation of host immunity
- Fitness advantage of mutant expires before full sweep

Evolution with partial sweeps

- Driven by fitness
- Low predictability
- Qualitatively closer to data

Thank you!

Summary

H3N2Influenza:

- Predictibility of evolution is surprisingly low
- Qualitatively different from models

Partial sweeps

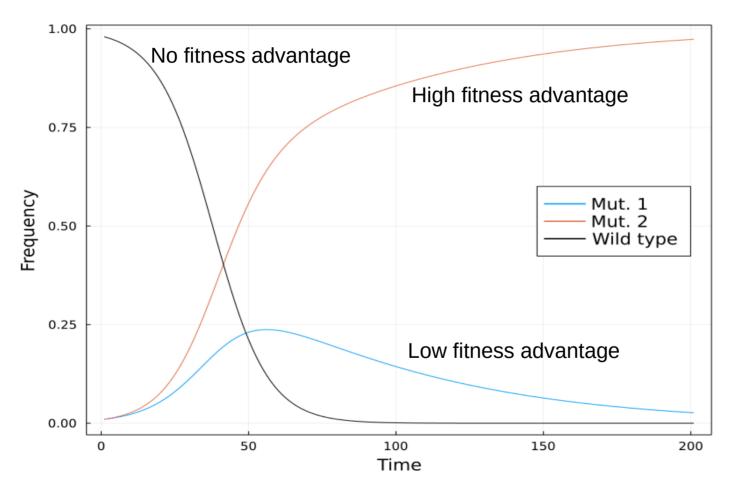
- Adaptation of host immunity
- Fitness advantage of mutant expires before full sweep

Evolution with partial sweeps

- Driven by fitness
- Low predictability
- Qualitatively closer to data

Thank you!

Is this expected? Clonal interference



Adaptive mutations appearing on different individuals

Competition

Genetic linkage: toy model

Simulate a population

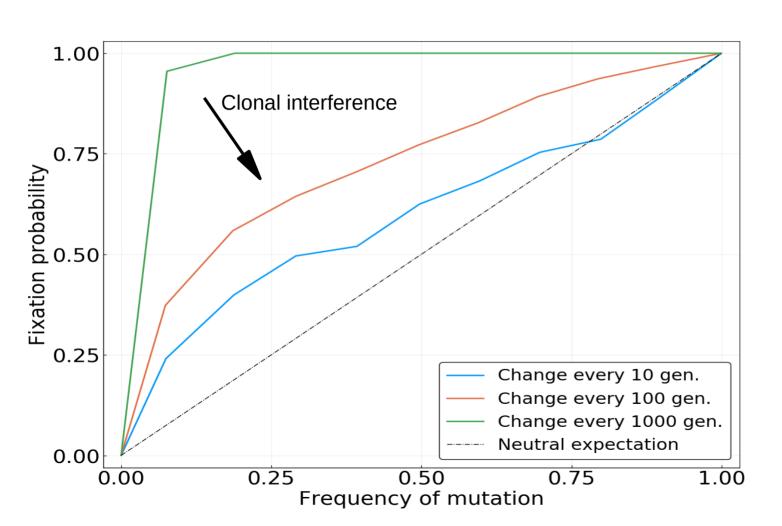
Simple fitness lanscape
$$f(\vec{s}) = \sum_{i=1}^{L} h_i s_i$$

Change the fitness landscape periodically

Slow rate of change Clean sweeps

High rate of change **Clonal interference**

Genetic linkage: toy model



Sweep time ~400 generations (vs ~3 years for flu)

It's hard to mimic neutrality!